Spaces:
Runtime error
Runtime error
File size: 8,307 Bytes
162943d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
from __future__ import division, print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Function
import voxelize_cuda
class VoxelizationFunction(Function):
"""
Definition of differentiable voxelization function
Currently implemented only for cuda Tensors
"""
@staticmethod
def forward(ctx, smpl_vertices, smpl_face_center, smpl_face_normal,
smpl_vertex_code, smpl_face_code, smpl_tetrahedrons,
volume_res, sigma, smooth_kernel_size):
"""
forward pass
Output format: (batch_size, z_dims, y_dims, x_dims, channel_num)
"""
assert (smpl_vertices.size()[1] == smpl_vertex_code.size()[1])
assert (smpl_face_center.size()[1] == smpl_face_normal.size()[1])
assert (smpl_face_center.size()[1] == smpl_face_code.size()[1])
ctx.batch_size = smpl_vertices.size()[0]
ctx.volume_res = volume_res
ctx.sigma = sigma
ctx.smooth_kernel_size = smooth_kernel_size
ctx.smpl_vertex_num = smpl_vertices.size()[1]
ctx.device = smpl_vertices.device
smpl_vertices = smpl_vertices.contiguous()
smpl_face_center = smpl_face_center.contiguous()
smpl_face_normal = smpl_face_normal.contiguous()
smpl_vertex_code = smpl_vertex_code.contiguous()
smpl_face_code = smpl_face_code.contiguous()
smpl_tetrahedrons = smpl_tetrahedrons.contiguous()
occ_volume = torch.cuda.FloatTensor(ctx.batch_size, ctx.volume_res,
ctx.volume_res,
ctx.volume_res).fill_(0.0)
semantic_volume = torch.cuda.FloatTensor(ctx.batch_size,
ctx.volume_res,
ctx.volume_res,
ctx.volume_res, 3).fill_(0.0)
weight_sum_volume = torch.cuda.FloatTensor(ctx.batch_size,
ctx.volume_res,
ctx.volume_res,
ctx.volume_res).fill_(1e-3)
# occ_volume [B, volume_res, volume_res, volume_res]
# semantic_volume [B, volume_res, volume_res, volume_res, 3]
# weight_sum_volume [B, volume_res, volume_res, volume_res]
occ_volume, semantic_volume, weight_sum_volume = voxelize_cuda.forward_semantic_voxelization(
smpl_vertices, smpl_vertex_code, smpl_tetrahedrons, occ_volume,
semantic_volume, weight_sum_volume, sigma)
return semantic_volume
class Voxelization(nn.Module):
"""
Wrapper around the autograd function VoxelizationFunction
"""
def __init__(self, smpl_vertex_code, smpl_face_code, smpl_face_indices,
smpl_tetraderon_indices, volume_res, sigma,
smooth_kernel_size, batch_size, device):
super(Voxelization, self).__init__()
assert (len(smpl_face_indices.shape) == 2)
assert (len(smpl_tetraderon_indices.shape) == 2)
assert (smpl_face_indices.shape[1] == 3)
assert (smpl_tetraderon_indices.shape[1] == 4)
self.volume_res = volume_res
self.sigma = sigma
self.smooth_kernel_size = smooth_kernel_size
self.batch_size = batch_size
self.device = device
self.smpl_vertex_code = smpl_vertex_code
self.smpl_face_code = smpl_face_code
self.smpl_face_indices = smpl_face_indices
self.smpl_tetraderon_indices = smpl_tetraderon_indices
def update_param(self, batch_size, smpl_tetra):
self.batch_size = batch_size
self.smpl_tetraderon_indices = smpl_tetra
smpl_vertex_code_batch = np.tile(self.smpl_vertex_code,
(self.batch_size, 1, 1))
smpl_face_code_batch = np.tile(self.smpl_face_code,
(self.batch_size, 1, 1))
smpl_face_indices_batch = np.tile(self.smpl_face_indices,
(self.batch_size, 1, 1))
smpl_tetraderon_indices_batch = np.tile(self.smpl_tetraderon_indices,
(self.batch_size, 1, 1))
smpl_vertex_code_batch = torch.from_numpy(
smpl_vertex_code_batch).contiguous().to(self.device)
smpl_face_code_batch = torch.from_numpy(
smpl_face_code_batch).contiguous().to(self.device)
smpl_face_indices_batch = torch.from_numpy(
smpl_face_indices_batch).contiguous().to(self.device)
smpl_tetraderon_indices_batch = torch.from_numpy(
smpl_tetraderon_indices_batch).contiguous().to(self.device)
self.register_buffer('smpl_vertex_code_batch', smpl_vertex_code_batch)
self.register_buffer('smpl_face_code_batch', smpl_face_code_batch)
self.register_buffer('smpl_face_indices_batch',
smpl_face_indices_batch)
self.register_buffer('smpl_tetraderon_indices_batch',
smpl_tetraderon_indices_batch)
def forward(self, smpl_vertices):
"""
Generate semantic volumes from SMPL vertices
"""
assert (smpl_vertices.size()[0] == self.batch_size)
self.check_input(smpl_vertices)
smpl_faces = self.vertices_to_faces(smpl_vertices)
smpl_tetrahedrons = self.vertices_to_tetrahedrons(smpl_vertices)
smpl_face_center = self.calc_face_centers(smpl_faces)
smpl_face_normal = self.calc_face_normals(smpl_faces)
smpl_surface_vertex_num = self.smpl_vertex_code_batch.size()[1]
smpl_vertices_surface = smpl_vertices[:, :smpl_surface_vertex_num, :]
vol = VoxelizationFunction.apply(smpl_vertices_surface,
smpl_face_center, smpl_face_normal,
self.smpl_vertex_code_batch,
self.smpl_face_code_batch,
smpl_tetrahedrons, self.volume_res,
self.sigma, self.smooth_kernel_size)
return vol.permute((0, 4, 1, 2, 3)) # (bzyxc --> bcdhw)
def vertices_to_faces(self, vertices):
assert (vertices.ndimension() == 3)
bs, nv = vertices.shape[:2]
device = vertices.device
face = self.smpl_face_indices_batch + (
torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices_ = vertices.reshape((bs * nv, 3))
return vertices_[face.long()]
def vertices_to_tetrahedrons(self, vertices):
assert (vertices.ndimension() == 3)
bs, nv = vertices.shape[:2]
device = vertices.device
tets = self.smpl_tetraderon_indices_batch + (
torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices_ = vertices.reshape((bs * nv, 3))
return vertices_[tets.long()]
def calc_face_centers(self, face_verts):
assert len(face_verts.shape) == 4
assert face_verts.shape[2] == 3
assert face_verts.shape[3] == 3
bs, nf = face_verts.shape[:2]
face_centers = (face_verts[:, :, 0, :] + face_verts[:, :, 1, :] +
face_verts[:, :, 2, :]) / 3.0
face_centers = face_centers.reshape((bs, nf, 3))
return face_centers
def calc_face_normals(self, face_verts):
assert len(face_verts.shape) == 4
assert face_verts.shape[2] == 3
assert face_verts.shape[3] == 3
bs, nf = face_verts.shape[:2]
face_verts = face_verts.reshape((bs * nf, 3, 3))
v10 = face_verts[:, 0] - face_verts[:, 1]
v12 = face_verts[:, 2] - face_verts[:, 1]
normals = F.normalize(torch.cross(v10, v12), eps=1e-5)
normals = normals.reshape((bs, nf, 3))
return normals
def check_input(self, x):
if x.device == 'cpu':
raise TypeError('Voxelization module supports only cuda tensors')
if x.type() != 'torch.cuda.FloatTensor':
raise TypeError(
'Voxelization module supports only float32 tensors')
|