File size: 25,430 Bytes
162943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
from lib.renderer.mesh import load_fit_body
from lib.dataset.hoppeMesh import HoppeMesh
from lib.dataset.body_model import TetraSMPLModel
from lib.common.render import Render
from lib.dataset.mesh_util import SMPLX, projection, cal_sdf_batch, get_visibility
from lib.pare.pare.utils.geometry import rotation_matrix_to_angle_axis
from termcolor import colored
import os.path as osp
import numpy as np
from PIL import Image
import random
import trimesh
import torch
import vedo
from kaolin.ops.mesh import check_sign
import torchvision.transforms as transforms
from ipdb import set_trace


class PIFuDataset():
    def __init__(self, cfg, split='train', vis=False):

        self.split = split
        self.root = cfg.root
        self.bsize = cfg.batch_size
        self.overfit = cfg.overfit

        # for debug, only used in visualize_sampling3D
        self.vis = vis

        self.opt = cfg.dataset
        self.datasets = self.opt.types
        self.input_size = self.opt.input_size
        self.scales = self.opt.scales
        self.workers = cfg.num_threads
        self.prior_type = cfg.net.prior_type

        self.noise_type = self.opt.noise_type
        self.noise_scale = self.opt.noise_scale

        noise_joints = [4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21]

        self.noise_smpl_idx = []
        self.noise_smplx_idx = []

        for idx in noise_joints:
            self.noise_smpl_idx.append(idx * 3)
            self.noise_smpl_idx.append(idx * 3 + 1)
            self.noise_smpl_idx.append(idx * 3 + 2)

            self.noise_smplx_idx.append((idx-1) * 3)
            self.noise_smplx_idx.append((idx-1) * 3 + 1)
            self.noise_smplx_idx.append((idx-1) * 3 + 2)

        self.use_sdf = cfg.sdf
        self.sdf_clip = cfg.sdf_clip

        # [(feat_name, channel_num),...]
        self.in_geo = [item[0] for item in cfg.net.in_geo]
        self.in_nml = [item[0] for item in cfg.net.in_nml]

        self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
        self.in_nml_dim = [item[1] for item in cfg.net.in_nml]

        self.in_total = self.in_geo + self.in_nml
        self.in_total_dim = self.in_geo_dim + self.in_nml_dim

        if self.split == 'train':
            self.rotations = np.arange(
                0, 360, 360 / self.opt.rotation_num).astype(np.int32)
        else:
            self.rotations = range(0, 360, 120)

        self.datasets_dict = {}

        for dataset_id, dataset in enumerate(self.datasets):

            mesh_dir = None
            smplx_dir = None

            dataset_dir = osp.join(self.root, dataset)

            if dataset in ['thuman2']:
                mesh_dir = osp.join(dataset_dir, "scans")
                smplx_dir = osp.join(dataset_dir, "fits")
                smpl_dir = osp.join(dataset_dir, "smpl")

            self.datasets_dict[dataset] = {
                "subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str),
                "smplx_dir": smplx_dir,
                "smpl_dir": smpl_dir,
                "mesh_dir": mesh_dir,
                "scale": self.scales[dataset_id]
            }

        self.subject_list = self.get_subject_list(split)
        self.smplx = SMPLX()

        # PIL to tensor
        self.image_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        # PIL to tensor
        self.mask_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.0, ), (1.0, ))
        ])

        self.device = torch.device(f"cuda:{cfg.gpus[0]}")
        self.render = Render(size=512, device=self.device)

    def render_normal(self, verts, faces):

        # render optimized mesh (normal, T_normal, image [-1,1])
        self.render.load_meshes(verts, faces)
        return self.render.get_rgb_image()

    def get_subject_list(self, split):

        subject_list = []

        for dataset in self.datasets:

            split_txt = osp.join(self.root, dataset, f'{split}.txt')

            if osp.exists(split_txt):
                print(f"load from {split_txt}")
                subject_list += np.loadtxt(split_txt, dtype=str).tolist()
            else:
                full_txt = osp.join(self.root, dataset, 'all.txt')
                print(f"split {full_txt} into train/val/test")

                full_lst = np.loadtxt(full_txt, dtype=str)
                full_lst = [dataset+"/"+item for item in full_lst]
                [train_lst, test_lst, val_lst] = np.split(
                    full_lst, [500, 500+5, ])

                np.savetxt(full_txt.replace(
                    "all", "train"), train_lst, fmt="%s")
                np.savetxt(full_txt.replace("all", "test"), test_lst, fmt="%s")
                np.savetxt(full_txt.replace("all", "val"), val_lst, fmt="%s")

                print(f"load from {split_txt}")
                subject_list += np.loadtxt(split_txt, dtype=str).tolist()

        if self.split != 'test':
            subject_list += subject_list[:self.bsize -
                                         len(subject_list) % self.bsize]
            print(colored(f"total: {len(subject_list)}", "yellow"))
            random.shuffle(subject_list)

        # subject_list = ["thuman2/0008"]
        return subject_list

    def __len__(self):
        return len(self.subject_list) * len(self.rotations)

    def __getitem__(self, index):

        # only pick the first data if overfitting
        if self.overfit:
            index = 0

        rid = index % len(self.rotations)
        mid = index // len(self.rotations)

        rotation = self.rotations[rid]
        subject = self.subject_list[mid].split("/")[1]
        dataset = self.subject_list[mid].split("/")[0]
        render_folder = "/".join([dataset +
                                 f"_{self.opt.rotation_num}views", subject])

        # setup paths
        data_dict = {
            'dataset': dataset,
            'subject': subject,
            'rotation': rotation,
            'scale': self.datasets_dict[dataset]["scale"],
            'mesh_path': osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}/{subject}.obj"),
            'smplx_path': osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}/smplx_param.pkl"),
            'smpl_path': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.pkl"),
            'calib_path': osp.join(self.root, render_folder, 'calib', f'{rotation:03d}.txt'),
            'vis_path': osp.join(self.root, render_folder, 'vis', f'{rotation:03d}.pt'),
            'image_path': osp.join(self.root, render_folder, 'render', f'{rotation:03d}.png')
        }

        # load training data
        data_dict.update(self.load_calib(data_dict))

        # image/normal/depth loader
        for name, channel in zip(self.in_total, self.in_total_dim):

            if f'{name}_path' not in data_dict.keys():
                data_dict.update({
                    f'{name}_path': osp.join(self.root, render_folder, name, f'{rotation:03d}.png')
                })

            # tensor update
            data_dict.update({
                name: self.imagepath2tensor(
                    data_dict[f'{name}_path'], channel, inv=False)
            })

        data_dict.update(self.load_mesh(data_dict))
        data_dict.update(self.get_sampling_geo(
            data_dict, is_valid=self.split == "val", is_sdf=self.use_sdf))
        data_dict.update(self.load_smpl(data_dict, self.vis))

        if self.prior_type == 'pamir':
            data_dict.update(self.load_smpl_voxel(data_dict))

        if (self.split != 'test') and (not self.vis):

            del data_dict['verts']
            del data_dict['faces']

        if not self.vis:
            del data_dict['mesh']

        path_keys = [
            key for key in data_dict.keys() if '_path' in key or '_dir' in key
        ]
        for key in path_keys:
            del data_dict[key]

        return data_dict

    def imagepath2tensor(self, path, channel=3, inv=False):

        rgba = Image.open(path).convert('RGBA')
        mask = rgba.split()[-1]
        image = rgba.convert('RGB')
        image = self.image_to_tensor(image)
        mask = self.mask_to_tensor(mask)
        image = (image * mask)[:channel]

        return (image * (0.5 - inv) * 2.0).float()

    def load_calib(self, data_dict):
        calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
        extrinsic = calib_data[:4, :4]
        intrinsic = calib_data[4:8, :4]
        calib_mat = np.matmul(intrinsic, extrinsic)
        calib_mat = torch.from_numpy(calib_mat).float()
        return {'calib': calib_mat}

    def load_mesh(self, data_dict):
        mesh_path = data_dict['mesh_path']
        scale = data_dict['scale']

        mesh_ori = trimesh.load(mesh_path,
                                skip_materials=True,
                                process=False,
                                maintain_order=True)
        verts = mesh_ori.vertices * scale
        faces = mesh_ori.faces

        vert_normals = np.array(mesh_ori.vertex_normals)
        face_normals = np.array(mesh_ori.face_normals)

        mesh = HoppeMesh(verts, faces, vert_normals, face_normals)

        return {
            'mesh': mesh,
            'verts': torch.as_tensor(mesh.verts).float(),
            'faces': torch.as_tensor(mesh.faces).long()
        }

    def add_noise(self,
                  beta_num,
                  smpl_pose,
                  smpl_betas,
                  noise_type,
                  noise_scale,
                  type,
                  hashcode):

        np.random.seed(hashcode)

        if type == 'smplx':
            noise_idx = self.noise_smplx_idx
        else:
            noise_idx = self.noise_smpl_idx

        if 'beta' in noise_type and noise_scale[noise_type.index("beta")] > 0.0:
            smpl_betas += (np.random.rand(beta_num) -
                           0.5) * 2.0 * noise_scale[noise_type.index("beta")]
            smpl_betas = smpl_betas.astype(np.float32)

        if 'pose' in noise_type and noise_scale[noise_type.index("pose")] > 0.0:
            smpl_pose[noise_idx] += (
                np.random.rand(len(noise_idx)) -
                0.5) * 2.0 * np.pi * noise_scale[noise_type.index("pose")]
            smpl_pose = smpl_pose.astype(np.float32)
        if type == 'smplx':
            return torch.as_tensor(smpl_pose[None, ...]), torch.as_tensor(smpl_betas[None, ...])
        else:
            return smpl_pose, smpl_betas

    def compute_smpl_verts(self, data_dict, noise_type=None, noise_scale=None):

        dataset = data_dict['dataset']
        smplx_dict = {}

        smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True)
        smplx_pose = smplx_param["body_pose"]  # [1,63]
        smplx_betas = smplx_param["betas"]  # [1,10]
        smplx_pose, smplx_betas = self.add_noise(
            smplx_betas.shape[1],
            smplx_pose[0],
            smplx_betas[0],
            noise_type,
            noise_scale,
            type='smplx',
            hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8))

        smplx_out, _ = load_fit_body(fitted_path=data_dict['smplx_path'],
                                     scale=self.datasets_dict[dataset]['scale'],
                                     smpl_type='smplx',
                                     smpl_gender='male',
                                     noise_dict=dict(betas=smplx_betas, body_pose=smplx_pose))

        smplx_dict.update({"type": "smplx",
                          "gender": 'male',
                           "body_pose": torch.as_tensor(smplx_pose),
                           "betas": torch.as_tensor(smplx_betas)})

        return smplx_out.vertices, smplx_dict

    def compute_voxel_verts(self,
                            data_dict,
                            noise_type=None,
                            noise_scale=None):

        smpl_param = np.load(data_dict['smpl_path'], allow_pickle=True)
        smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True)

        smpl_pose = rotation_matrix_to_angle_axis(
            torch.as_tensor(smpl_param['full_pose'][0])).numpy()
        smpl_betas = smpl_param["betas"]

        smpl_path = osp.join(self.smplx.model_dir, "smpl/SMPL_MALE.pkl")
        tetra_path = osp.join(self.smplx.tedra_dir,
                              "tetra_male_adult_smpl.npz")

        smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult')

        smpl_pose, smpl_betas = self.add_noise(
            smpl_model.beta_shape[0],
            smpl_pose.flatten(),
            smpl_betas[0],
            noise_type,
            noise_scale,
            type='smpl',
            hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8))

        smpl_model.set_params(pose=smpl_pose.reshape(-1, 3),
                              beta=smpl_betas,
                              trans=smpl_param["transl"])
        
        verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added],
                                axis=0) * smplx_param["scale"] + smplx_param["translation"]
                 ) * self.datasets_dict[data_dict['dataset']]['scale']
        faces = np.loadtxt(osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"),
                           dtype=np.int32) - 1

        pad_v_num = int(8000 - verts.shape[0])
        pad_f_num = int(25100 - faces.shape[0])

        verts = np.pad(verts, ((0, pad_v_num), (0, 0)),
                       mode='constant',
                       constant_values=0.0).astype(np.float32)
        faces = np.pad(faces, ((0, pad_f_num), (0, 0)),
                       mode='constant',
                       constant_values=0.0).astype(np.int32)
        

        return verts, faces, pad_v_num, pad_f_num

    def load_smpl(self, data_dict, vis=False):

        smplx_verts, smplx_dict = self.compute_smpl_verts(
            data_dict, self.noise_type,
            self.noise_scale)  # compute using smpl model

        smplx_verts = projection(smplx_verts, data_dict['calib']).float()
        smplx_faces = torch.as_tensor(self.smplx.faces).long()
        smplx_vis = torch.load(data_dict['vis_path']).float()
        smplx_cmap = torch.as_tensor(
            np.load(self.smplx.cmap_vert_path)).float()

        # get smpl_signs
        query_points = projection(data_dict['samples_geo'],
                                  data_dict['calib']).float()

        pts_signs = 2.0 * (check_sign(smplx_verts.unsqueeze(0),
                                      smplx_faces,
                                      query_points.unsqueeze(0)).float() - 0.5).squeeze(0)

        return_dict = {
            'smpl_verts': smplx_verts,
            'smpl_faces': smplx_faces,
            'smpl_vis': smplx_vis,
            'smpl_cmap': smplx_cmap,
            'pts_signs': pts_signs
        }
        if smplx_dict is not None:
            return_dict.update(smplx_dict)

        if vis:

            (xy, z) = torch.as_tensor(smplx_verts).to(
                self.device).split([2, 1], dim=1)
            smplx_vis = get_visibility(xy, z, torch.as_tensor(
                smplx_faces).to(self.device).long())

            T_normal_F, T_normal_B = self.render_normal(
                (smplx_verts*torch.tensor([1.0, -1.0, 1.0])).to(self.device),
                smplx_faces.to(self.device))

            return_dict.update({"T_normal_F": T_normal_F.squeeze(0),
                                "T_normal_B": T_normal_B.squeeze(0)})
            query_points = projection(data_dict['samples_geo'],
                                      data_dict['calib']).float()

            smplx_sdf, smplx_norm, smplx_cmap, smplx_vis = cal_sdf_batch(
                smplx_verts.unsqueeze(0).to(self.device),
                smplx_faces.unsqueeze(0).to(self.device),
                smplx_cmap.unsqueeze(0).to(self.device),
                smplx_vis.unsqueeze(0).to(self.device),
                query_points.unsqueeze(0).contiguous().to(self.device))

            return_dict.update({
                'smpl_feat':
                torch.cat(
                    (smplx_sdf[0].detach().cpu(),
                     smplx_cmap[0].detach().cpu(),
                     smplx_norm[0].detach().cpu(),
                     smplx_vis[0].detach().cpu()),
                    dim=1)
            })

        return return_dict

    def load_smpl_voxel(self, data_dict):

        smpl_verts, smpl_faces, pad_v_num, pad_f_num = self.compute_voxel_verts(
            data_dict, self.noise_type,
            self.noise_scale)  # compute using smpl model
        smpl_verts = projection(smpl_verts, data_dict['calib'])

        smpl_verts *= 0.5

        return {
            'voxel_verts': smpl_verts,
            'voxel_faces': smpl_faces,
            'pad_v_num': pad_v_num,
            'pad_f_num': pad_f_num
        }

    def get_sampling_geo(self, data_dict, is_valid=False, is_sdf=False):

        mesh = data_dict['mesh']
        calib = data_dict['calib']

        # Samples are around the true surface with an offset
        n_samples_surface = 4 * self.opt.num_sample_geo
        vert_ids = np.arange(mesh.verts.shape[0])
        thickness_sample_ratio = np.ones_like(vert_ids).astype(np.float32)

        thickness_sample_ratio /= thickness_sample_ratio.sum()

        samples_surface_ids = np.random.choice(vert_ids,
                                               n_samples_surface,
                                               replace=True,
                                               p=thickness_sample_ratio)

        samples_normal_ids = np.random.choice(vert_ids,
                                              self.opt.num_sample_geo // 2,
                                              replace=False,
                                              p=thickness_sample_ratio)

        surf_samples = mesh.verts[samples_normal_ids, :]
        surf_normals = mesh.vert_normals[samples_normal_ids, :]

        samples_surface = mesh.verts[samples_surface_ids, :]

        # Sampling offsets are random noise with constant scale (15cm - 20cm)
        offset = np.random.normal(scale=self.opt.sigma_geo,
                                  size=(n_samples_surface, 1))
        samples_surface += mesh.vert_normals[samples_surface_ids, :] * offset

        # Uniform samples in [-1, 1]
        calib_inv = np.linalg.inv(calib)
        n_samples_space = self.opt.num_sample_geo // 4
        samples_space_img = 2.0 * np.random.rand(n_samples_space, 3) - 1.0
        samples_space = projection(samples_space_img, calib_inv)

        # z-ray direction samples
        if self.opt.zray_type and not is_valid:
            n_samples_rayz = self.opt.ray_sample_num
            samples_surface_cube = projection(samples_surface, calib)
            samples_surface_cube_repeat = np.repeat(samples_surface_cube,
                                                    n_samples_rayz,
                                                    axis=0)

            thickness_repeat = np.repeat(0.5 *
                                         np.ones_like(samples_surface_ids),
                                         n_samples_rayz,
                                         axis=0)

            noise_repeat = np.random.normal(scale=0.40,
                                            size=(n_samples_surface *
                                                  n_samples_rayz, ))
            samples_surface_cube_repeat[:,
                                        -1] += thickness_repeat * noise_repeat
            samples_surface_rayz = projection(samples_surface_cube_repeat,
                                              calib_inv)

            samples = np.concatenate(
                [samples_surface, samples_space, samples_surface_rayz], 0)
        else:
            samples = np.concatenate([samples_surface, samples_space], 0)

        np.random.shuffle(samples)

        # labels: in->1.0; out->0.0.
        if is_sdf:
            sdfs = mesh.get_sdf(samples)
            inside_samples = samples[sdfs < 0]
            outside_samples = samples[sdfs >= 0]

            inside_sdfs = sdfs[sdfs < 0]
            outside_sdfs = sdfs[sdfs >= 0]
        else:
            inside = mesh.contains(samples)
            inside_samples = samples[inside >= 0.5]
            outside_samples = samples[inside < 0.5]

        nin = inside_samples.shape[0]

        if nin > self.opt.num_sample_geo // 2:
            inside_samples = inside_samples[:self.opt.num_sample_geo // 2]
            outside_samples = outside_samples[:self.opt.num_sample_geo // 2]
            if is_sdf:
                inside_sdfs = inside_sdfs[:self.opt.num_sample_geo // 2]
                outside_sdfs = outside_sdfs[:self.opt.num_sample_geo // 2]
        else:
            outside_samples = outside_samples[:(self.opt.num_sample_geo - nin)]
            if is_sdf:
                outside_sdfs = outside_sdfs[:(self.opt.num_sample_geo - nin)]

        if is_sdf:
            samples = np.concatenate(
                [inside_samples, outside_samples, surf_samples], 0)

            labels = np.concatenate([
                inside_sdfs, outside_sdfs, 0.0 * np.ones(surf_samples.shape[0])
            ])

            normals = np.zeros_like(samples)
            normals[-self.opt.num_sample_geo // 2:, :] = surf_normals

            # convert sdf from [-14, 130] to [0, 1]
            # outside: 0, inside: 1
            # Note: Marching cubes is defined on occupancy space (inside=1.0, outside=0.0)

            labels = -labels.clip(min=-self.sdf_clip, max=self.sdf_clip)
            labels += self.sdf_clip
            labels /= (self.sdf_clip * 2)

        else:
            samples = np.concatenate([inside_samples, outside_samples])
            labels = np.concatenate([
                np.ones(inside_samples.shape[0]),
                np.zeros(outside_samples.shape[0])
            ])

            normals = np.zeros_like(samples)

        samples = torch.from_numpy(samples).float()
        labels = torch.from_numpy(labels).float()
        normals = torch.from_numpy(normals).float()

        return {'samples_geo': samples, 'labels_geo': labels}

    def visualize_sampling3D(self, data_dict, mode='vis'):

        # create plot
        vp = vedo.Plotter(title="", size=(1500, 1500), axes=0, bg='white')
        vis_list = []

        assert mode in ['vis', 'sdf', 'normal', 'cmap', 'occ']

        # sdf-1 cmap-3 norm-3 vis-1
        if mode == 'vis':
            labels = data_dict[f'smpl_feat'][:, [-1]]  # visibility
            colors = np.concatenate([labels, labels, labels], axis=1)
        elif mode == 'occ':
            labels = data_dict[f'labels_geo'][..., None]  # occupancy
            colors = np.concatenate([labels, labels, labels], axis=1)
        elif mode == 'sdf':
            labels = data_dict[f'smpl_feat'][:, [0]]  # sdf
            labels -= labels.min()
            labels /= labels.max()
            colors = np.concatenate([labels, labels, labels], axis=1)
        elif mode == 'normal':
            labels = data_dict[f'smpl_feat'][:, -4:-1]  # normal
            colors = (labels + 1.0) * 0.5
        elif mode == 'cmap':
            labels = data_dict[f'smpl_feat'][:, -7:-4]  # colormap
            colors = np.array(labels)

        points = projection(data_dict['samples_geo'], data_dict['calib'])
        verts = projection(data_dict['verts'], data_dict['calib'])
        points[:, 1] *= -1
        verts[:, 1] *= -1

        # create a mesh
        mesh = trimesh.Trimesh(verts, data_dict['faces'], process=True)
        mesh.visual.vertex_colors = [128.0, 128.0, 128.0, 255.0]
        vis_list.append(mesh)

        if 'voxel_verts' in data_dict.keys():
            print(colored("voxel verts", "green"))
            voxel_verts = data_dict['voxel_verts'] * 2.0
            voxel_faces = data_dict['voxel_faces']
            voxel_verts[:, 1] *= -1
            voxel = trimesh.Trimesh(
                voxel_verts, voxel_faces[:, [0, 2, 1]], process=False, maintain_order=True)
            voxel.visual.vertex_colors = [0.0, 128.0, 0.0, 255.0]
            vis_list.append(voxel)

        if 'smpl_verts' in data_dict.keys():
            print(colored("smpl verts", "green"))
            smplx_verts = data_dict['smpl_verts']
            smplx_faces = data_dict['smpl_faces']
            smplx_verts[:, 1] *= -1
            smplx = trimesh.Trimesh(
                smplx_verts, smplx_faces[:, [0, 2, 1]], process=False, maintain_order=True)
            smplx.visual.vertex_colors = [128.0, 128.0, 0.0, 255.0]
            vis_list.append(smplx)

        # create a picure
        img_pos = [1.0, 0.0, -1.0]
        for img_id, img_key in enumerate(['normal_F', 'image', 'T_normal_B']):
            image_arr = (data_dict[img_key].detach().cpu().permute(
                1, 2, 0).numpy() + 1.0) * 0.5 * 255.0
            image_dim = image_arr.shape[0]
            image = vedo.Picture(image_arr).scale(
                2.0 / image_dim).pos(-1.0, -1.0, img_pos[img_id])
            vis_list.append(image)

        # create a pointcloud
        pc = vedo.Points(points, r=15, c=np.float32(colors))
        vis_list.append(pc)

        vp.show(*vis_list, bg="white", axes=1.0, interactive=True)