File size: 6,326 Bytes
162943d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from lib.net import NormalNet
from lib.common.train_util import *
import logging
import torch
import numpy as np
from torch import nn
from skimage.transform import resize
import pytorch_lightning as pl

torch.backends.cudnn.benchmark = True

logging.getLogger("lightning").setLevel(logging.ERROR)


class Normal(pl.LightningModule):
    def __init__(self, cfg):
        super(Normal, self).__init__()
        self.cfg = cfg
        self.batch_size = self.cfg.batch_size
        self.lr_N = self.cfg.lr_N

        self.schedulers = []

        self.netG = NormalNet(self.cfg, error_term=nn.SmoothL1Loss())

        self.in_nml = [item[0] for item in cfg.net.in_nml]

    def get_progress_bar_dict(self):
        tqdm_dict = super().get_progress_bar_dict()
        if "v_num" in tqdm_dict:
            del tqdm_dict["v_num"]
        return tqdm_dict

    # Training related
    def configure_optimizers(self):

        # set optimizer
        weight_decay = self.cfg.weight_decay
        momentum = self.cfg.momentum

        optim_params_N_F = [
            {"params": self.netG.netF.parameters(), "lr": self.lr_N}]
        optim_params_N_B = [
            {"params": self.netG.netB.parameters(), "lr": self.lr_N}]

        optimizer_N_F = torch.optim.Adam(
            optim_params_N_F, lr=self.lr_N, weight_decay=weight_decay
        )

        optimizer_N_B = torch.optim.Adam(
            optim_params_N_B, lr=self.lr_N, weight_decay=weight_decay
        )

        scheduler_N_F = torch.optim.lr_scheduler.MultiStepLR(
            optimizer_N_F, milestones=self.cfg.schedule, gamma=self.cfg.gamma
        )

        scheduler_N_B = torch.optim.lr_scheduler.MultiStepLR(
            optimizer_N_B, milestones=self.cfg.schedule, gamma=self.cfg.gamma
        )

        self.schedulers = [scheduler_N_F, scheduler_N_B]
        optims = [optimizer_N_F, optimizer_N_B]

        return optims, self.schedulers

    def render_func(self, render_tensor):

        height = render_tensor["image"].shape[2]
        result_list = []

        for name in render_tensor.keys():
            result_list.append(
                resize(
                    ((render_tensor[name].cpu().numpy()[0] + 1.0) / 2.0).transpose(
                        1, 2, 0
                    ),
                    (height, height),
                    anti_aliasing=True,
                )
            )
        result_array = np.concatenate(result_list, axis=1)

        return result_array

    def training_step(self, batch, batch_idx, optimizer_idx):

        export_cfg(self.logger, self.cfg)

        # retrieve the data
        in_tensor = {}
        for name in self.in_nml:
            in_tensor[name] = batch[name]

        FB_tensor = {"normal_F": batch["normal_F"],
                     "normal_B": batch["normal_B"]}

        self.netG.train()

        preds_F, preds_B = self.netG(in_tensor)
        error_NF, error_NB = self.netG.get_norm_error(
            preds_F, preds_B, FB_tensor)

        (opt_nf, opt_nb) = self.optimizers()

        opt_nf.zero_grad()
        opt_nb.zero_grad()

        self.manual_backward(error_NF, opt_nf)
        self.manual_backward(error_NB, opt_nb)

        opt_nf.step()
        opt_nb.step()

        if batch_idx > 0 and batch_idx % int(self.cfg.freq_show_train) == 0:

            self.netG.eval()
            with torch.no_grad():
                nmlF, nmlB = self.netG(in_tensor)
                in_tensor.update({"nmlF": nmlF, "nmlB": nmlB})
                result_array = self.render_func(in_tensor)

                self.logger.experiment.add_image(
                    tag=f"Normal-train/{self.global_step}",
                    img_tensor=result_array.transpose(2, 0, 1),
                    global_step=self.global_step,
                )

        # metrics processing
        metrics_log = {
            "train_loss-NF": error_NF.item(),
            "train_loss-NB": error_NB.item(),
        }

        tf_log = tf_log_convert(metrics_log)
        bar_log = bar_log_convert(metrics_log)

        return {
            "loss": error_NF + error_NB,
            "loss-NF": error_NF,
            "loss-NB": error_NB,
            "log": tf_log,
            "progress_bar": bar_log,
        }

    def training_epoch_end(self, outputs):

        if [] in outputs:
            outputs = outputs[0]

        # metrics processing
        metrics_log = {
            "train_avgloss": batch_mean(outputs, "loss"),
            "train_avgloss-NF": batch_mean(outputs, "loss-NF"),
            "train_avgloss-NB": batch_mean(outputs, "loss-NB"),
        }

        tf_log = tf_log_convert(metrics_log)

        tf_log["lr-NF"] = self.schedulers[0].get_last_lr()[0]
        tf_log["lr-NB"] = self.schedulers[1].get_last_lr()[0]

        return {"log": tf_log}

    def validation_step(self, batch, batch_idx):

        # retrieve the data
        in_tensor = {}
        for name in self.in_nml:
            in_tensor[name] = batch[name]

        FB_tensor = {"normal_F": batch["normal_F"],
                     "normal_B": batch["normal_B"]}

        self.netG.train()

        preds_F, preds_B = self.netG(in_tensor)
        error_NF, error_NB = self.netG.get_norm_error(
            preds_F, preds_B, FB_tensor)

        if (batch_idx > 0 and batch_idx % int(self.cfg.freq_show_train) == 0) or (
            batch_idx == 0
        ):

            with torch.no_grad():
                nmlF, nmlB = self.netG(in_tensor)
                in_tensor.update({"nmlF": nmlF, "nmlB": nmlB})
                result_array = self.render_func(in_tensor)

                self.logger.experiment.add_image(
                    tag=f"Normal-val/{self.global_step}",
                    img_tensor=result_array.transpose(2, 0, 1),
                    global_step=self.global_step,
                )

        return {
            "val_loss": error_NF + error_NB,
            "val_loss-NF": error_NF,
            "val_loss-NB": error_NB,
        }

    def validation_epoch_end(self, outputs):

        # metrics processing
        metrics_log = {
            "val_avgloss": batch_mean(outputs, "val_loss"),
            "val_avgloss-NF": batch_mean(outputs, "val_loss-NF"),
            "val_avgloss-NB": batch_mean(outputs, "val_loss-NB"),
        }

        tf_log = tf_log_convert(metrics_log)

        return {"log": tf_log}