Spaces:
Runtime error
Runtime error
File size: 6,326 Bytes
162943d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from lib.net import NormalNet
from lib.common.train_util import *
import logging
import torch
import numpy as np
from torch import nn
from skimage.transform import resize
import pytorch_lightning as pl
torch.backends.cudnn.benchmark = True
logging.getLogger("lightning").setLevel(logging.ERROR)
class Normal(pl.LightningModule):
def __init__(self, cfg):
super(Normal, self).__init__()
self.cfg = cfg
self.batch_size = self.cfg.batch_size
self.lr_N = self.cfg.lr_N
self.schedulers = []
self.netG = NormalNet(self.cfg, error_term=nn.SmoothL1Loss())
self.in_nml = [item[0] for item in cfg.net.in_nml]
def get_progress_bar_dict(self):
tqdm_dict = super().get_progress_bar_dict()
if "v_num" in tqdm_dict:
del tqdm_dict["v_num"]
return tqdm_dict
# Training related
def configure_optimizers(self):
# set optimizer
weight_decay = self.cfg.weight_decay
momentum = self.cfg.momentum
optim_params_N_F = [
{"params": self.netG.netF.parameters(), "lr": self.lr_N}]
optim_params_N_B = [
{"params": self.netG.netB.parameters(), "lr": self.lr_N}]
optimizer_N_F = torch.optim.Adam(
optim_params_N_F, lr=self.lr_N, weight_decay=weight_decay
)
optimizer_N_B = torch.optim.Adam(
optim_params_N_B, lr=self.lr_N, weight_decay=weight_decay
)
scheduler_N_F = torch.optim.lr_scheduler.MultiStepLR(
optimizer_N_F, milestones=self.cfg.schedule, gamma=self.cfg.gamma
)
scheduler_N_B = torch.optim.lr_scheduler.MultiStepLR(
optimizer_N_B, milestones=self.cfg.schedule, gamma=self.cfg.gamma
)
self.schedulers = [scheduler_N_F, scheduler_N_B]
optims = [optimizer_N_F, optimizer_N_B]
return optims, self.schedulers
def render_func(self, render_tensor):
height = render_tensor["image"].shape[2]
result_list = []
for name in render_tensor.keys():
result_list.append(
resize(
((render_tensor[name].cpu().numpy()[0] + 1.0) / 2.0).transpose(
1, 2, 0
),
(height, height),
anti_aliasing=True,
)
)
result_array = np.concatenate(result_list, axis=1)
return result_array
def training_step(self, batch, batch_idx, optimizer_idx):
export_cfg(self.logger, self.cfg)
# retrieve the data
in_tensor = {}
for name in self.in_nml:
in_tensor[name] = batch[name]
FB_tensor = {"normal_F": batch["normal_F"],
"normal_B": batch["normal_B"]}
self.netG.train()
preds_F, preds_B = self.netG(in_tensor)
error_NF, error_NB = self.netG.get_norm_error(
preds_F, preds_B, FB_tensor)
(opt_nf, opt_nb) = self.optimizers()
opt_nf.zero_grad()
opt_nb.zero_grad()
self.manual_backward(error_NF, opt_nf)
self.manual_backward(error_NB, opt_nb)
opt_nf.step()
opt_nb.step()
if batch_idx > 0 and batch_idx % int(self.cfg.freq_show_train) == 0:
self.netG.eval()
with torch.no_grad():
nmlF, nmlB = self.netG(in_tensor)
in_tensor.update({"nmlF": nmlF, "nmlB": nmlB})
result_array = self.render_func(in_tensor)
self.logger.experiment.add_image(
tag=f"Normal-train/{self.global_step}",
img_tensor=result_array.transpose(2, 0, 1),
global_step=self.global_step,
)
# metrics processing
metrics_log = {
"train_loss-NF": error_NF.item(),
"train_loss-NB": error_NB.item(),
}
tf_log = tf_log_convert(metrics_log)
bar_log = bar_log_convert(metrics_log)
return {
"loss": error_NF + error_NB,
"loss-NF": error_NF,
"loss-NB": error_NB,
"log": tf_log,
"progress_bar": bar_log,
}
def training_epoch_end(self, outputs):
if [] in outputs:
outputs = outputs[0]
# metrics processing
metrics_log = {
"train_avgloss": batch_mean(outputs, "loss"),
"train_avgloss-NF": batch_mean(outputs, "loss-NF"),
"train_avgloss-NB": batch_mean(outputs, "loss-NB"),
}
tf_log = tf_log_convert(metrics_log)
tf_log["lr-NF"] = self.schedulers[0].get_last_lr()[0]
tf_log["lr-NB"] = self.schedulers[1].get_last_lr()[0]
return {"log": tf_log}
def validation_step(self, batch, batch_idx):
# retrieve the data
in_tensor = {}
for name in self.in_nml:
in_tensor[name] = batch[name]
FB_tensor = {"normal_F": batch["normal_F"],
"normal_B": batch["normal_B"]}
self.netG.train()
preds_F, preds_B = self.netG(in_tensor)
error_NF, error_NB = self.netG.get_norm_error(
preds_F, preds_B, FB_tensor)
if (batch_idx > 0 and batch_idx % int(self.cfg.freq_show_train) == 0) or (
batch_idx == 0
):
with torch.no_grad():
nmlF, nmlB = self.netG(in_tensor)
in_tensor.update({"nmlF": nmlF, "nmlB": nmlB})
result_array = self.render_func(in_tensor)
self.logger.experiment.add_image(
tag=f"Normal-val/{self.global_step}",
img_tensor=result_array.transpose(2, 0, 1),
global_step=self.global_step,
)
return {
"val_loss": error_NF + error_NB,
"val_loss-NF": error_NF,
"val_loss-NB": error_NB,
}
def validation_epoch_end(self, outputs):
# metrics processing
metrics_log = {
"val_avgloss": batch_mean(outputs, "val_loss"),
"val_avgloss-NF": batch_mean(outputs, "val_loss-NF"),
"val_avgloss-NB": batch_mean(outputs, "val_loss-NB"),
}
tf_log = tf_log_convert(metrics_log)
return {"log": tf_log}
|