File size: 16,494 Bytes
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt


def plot_mask2D(mask,
                title="",
                point_coords=None,
                figsize=10,
                point_marker_size=5):
    '''
    Simple plotting tool to show intermediate mask predictions and points 
    where PointRend is applied.

    Args:
    mask (Tensor): mask prediction of shape HxW
    title (str): title for the plot
    point_coords ((Tensor, Tensor)): x and y point coordinates
    figsize (int): size of the figure to plot
    point_marker_size (int): marker size for points
    '''

    H, W = mask.shape
    plt.figure(figsize=(figsize, figsize))
    if title:
        title += ", "
    plt.title("{}resolution {}x{}".format(title, H, W), fontsize=30)
    plt.ylabel(H, fontsize=30)
    plt.xlabel(W, fontsize=30)
    plt.xticks([], [])
    plt.yticks([], [])
    plt.imshow(mask.detach(),
               interpolation="nearest",
               cmap=plt.get_cmap('gray'))
    if point_coords is not None:
        plt.scatter(x=point_coords[0],
                    y=point_coords[1],
                    color="red",
                    s=point_marker_size,
                    clip_on=True)
    plt.xlim(-0.5, W - 0.5)
    plt.ylim(H - 0.5, -0.5)
    plt.show()


def plot_mask3D(mask=None,
                title="",
                point_coords=None,
                figsize=1500,
                point_marker_size=8,
                interactive=True):
    '''
    Simple plotting tool to show intermediate mask predictions and points 
    where PointRend is applied.

    Args:
    mask (Tensor): mask prediction of shape DxHxW
    title (str): title for the plot
    point_coords ((Tensor, Tensor, Tensor)): x and y and z point coordinates
    figsize (int): size of the figure to plot
    point_marker_size (int): marker size for points
    '''
    import trimesh
    import vtkplotter
    from skimage import measure

    vp = vtkplotter.Plotter(title=title, size=(figsize, figsize))
    vis_list = []

    if mask is not None:
        mask = mask.detach().to("cpu").numpy()
        mask = mask.transpose(2, 1, 0)

        # marching cube to find surface
        verts, faces, normals, values = measure.marching_cubes_lewiner(
            mask, 0.5, gradient_direction='ascent')

        # create a mesh
        mesh = trimesh.Trimesh(verts, faces)
        mesh.visual.face_colors = [200, 200, 250, 100]
        vis_list.append(mesh)

    if point_coords is not None:
        point_coords = torch.stack(point_coords, 1).to("cpu").numpy()

        # import numpy as np
        # select_x = np.logical_and(point_coords[:, 0] >= 16, point_coords[:, 0] <= 112)
        # select_y = np.logical_and(point_coords[:, 1] >= 48, point_coords[:, 1] <= 272)
        # select_z = np.logical_and(point_coords[:, 2] >= 16, point_coords[:, 2] <= 112)
        # select = np.logical_and(np.logical_and(select_x, select_y), select_z)
        # point_coords = point_coords[select, :]

        pc = vtkplotter.Points(point_coords, r=point_marker_size, c='red')
        vis_list.append(pc)

    vp.show(*vis_list,
            bg="white",
            axes=1,
            interactive=interactive,
            azimuth=30,
            elevation=30)


def create_grid3D(min, max, steps):
    if type(min) is int:
        min = (min, min, min)  # (x, y, z)
    if type(max) is int:
        max = (max, max, max)  # (x, y)
    if type(steps) is int:
        steps = (steps, steps, steps)  # (x, y, z)
    arrangeX = torch.linspace(min[0], max[0], steps[0]).long()
    arrangeY = torch.linspace(min[1], max[1], steps[1]).long()
    arrangeZ = torch.linspace(min[2], max[2], steps[2]).long()
    gridD, girdH, gridW = torch.meshgrid([arrangeZ, arrangeY, arrangeX])
    coords = torch.stack([gridW, girdH,
                          gridD])  # [2, steps[0], steps[1], steps[2]]
    coords = coords.view(3, -1).t()  # [N, 3]
    return coords


def create_grid2D(min, max, steps):
    if type(min) is int:
        min = (min, min)  # (x, y)
    if type(max) is int:
        max = (max, max)  # (x, y)
    if type(steps) is int:
        steps = (steps, steps)  # (x, y)
    arrangeX = torch.linspace(min[0], max[0], steps[0]).long()
    arrangeY = torch.linspace(min[1], max[1], steps[1]).long()
    girdH, gridW = torch.meshgrid([arrangeY, arrangeX])
    coords = torch.stack([gridW, girdH])  # [2, steps[0], steps[1]]
    coords = coords.view(2, -1).t()  # [N, 2]
    return coords


class SmoothConv2D(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3):
        super().__init__()
        assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
        self.padding = (kernel_size - 1) // 2

        weight = torch.ones(
            (in_channels, out_channels, kernel_size, kernel_size),
            dtype=torch.float32) / (kernel_size**2)
        self.register_buffer('weight', weight)

    def forward(self, input):
        return F.conv2d(input, self.weight, padding=self.padding)


class SmoothConv3D(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3):
        super().__init__()
        assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
        self.padding = (kernel_size - 1) // 2

        weight = torch.ones(
            (in_channels, out_channels, kernel_size, kernel_size, kernel_size),
            dtype=torch.float32) / (kernel_size**3)
        self.register_buffer('weight', weight)

    def forward(self, input):
        return F.conv3d(input, self.weight, padding=self.padding)


def build_smooth_conv3D(in_channels=1,
                        out_channels=1,
                        kernel_size=3,
                        padding=1):
    smooth_conv = torch.nn.Conv3d(in_channels=in_channels,
                                  out_channels=out_channels,
                                  kernel_size=kernel_size,
                                  padding=padding)
    smooth_conv.weight.data = torch.ones(
        (in_channels, out_channels, kernel_size, kernel_size, kernel_size),
        dtype=torch.float32) / (kernel_size**3)
    smooth_conv.bias.data = torch.zeros(out_channels)
    return smooth_conv


def build_smooth_conv2D(in_channels=1,
                        out_channels=1,
                        kernel_size=3,
                        padding=1):
    smooth_conv = torch.nn.Conv2d(in_channels=in_channels,
                                  out_channels=out_channels,
                                  kernel_size=kernel_size,
                                  padding=padding)
    smooth_conv.weight.data = torch.ones(
        (in_channels, out_channels, kernel_size, kernel_size),
        dtype=torch.float32) / (kernel_size**2)
    smooth_conv.bias.data = torch.zeros(out_channels)
    return smooth_conv


def get_uncertain_point_coords_on_grid3D(uncertainty_map, num_points,
                                         **kwargs):
    """
    Find `num_points` most uncertain points from `uncertainty_map` grid.
    Args:
        uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty
            values for a set of points on a regular H x W x D grid.
        num_points (int): The number of points P to select.
    Returns:
        point_indices (Tensor): A tensor of shape (N, P) that contains indices from
            [0, H x W x D) of the most uncertain points.
        point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized
            coordinates of the most uncertain points from the H x W x D grid.
    """
    R, _, D, H, W = uncertainty_map.shape
    # h_step = 1.0 / float(H)
    # w_step = 1.0 / float(W)
    # d_step = 1.0 / float(D)

    num_points = min(D * H * W, num_points)
    point_scores, point_indices = torch.topk(uncertainty_map.view(
        R, D * H * W),
        k=num_points,
        dim=1)
    point_coords = torch.zeros(R,
                               num_points,
                               3,
                               dtype=torch.float,
                               device=uncertainty_map.device)
    # point_coords[:, :, 0] = h_step / 2.0 + (point_indices // (W * D)).to(torch.float) * h_step
    # point_coords[:, :, 1] = w_step / 2.0 + (point_indices % (W * D) // D).to(torch.float) * w_step
    # point_coords[:, :, 2] = d_step / 2.0 + (point_indices % D).to(torch.float) * d_step
    point_coords[:, :, 0] = (point_indices % W).to(torch.float)  # x
    point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float)  # y
    point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float)  # z
    print(f"resolution {D} x {H} x {W}", point_scores.min(),
          point_scores.max())
    return point_indices, point_coords


def get_uncertain_point_coords_on_grid3D_faster(uncertainty_map, num_points,
                                                clip_min):
    """
    Find `num_points` most uncertain points from `uncertainty_map` grid.
    Args:
        uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty
            values for a set of points on a regular H x W x D grid.
        num_points (int): The number of points P to select.
    Returns:
        point_indices (Tensor): A tensor of shape (N, P) that contains indices from
            [0, H x W x D) of the most uncertain points.
        point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized
            coordinates of the most uncertain points from the H x W x D grid.
    """
    R, _, D, H, W = uncertainty_map.shape
    # h_step = 1.0 / float(H)
    # w_step = 1.0 / float(W)
    # d_step = 1.0 / float(D)

    assert R == 1, "batchsize > 1 is not implemented!"
    uncertainty_map = uncertainty_map.view(D * H * W)
    indices = (uncertainty_map >= clip_min).nonzero().squeeze(1)
    num_points = min(num_points, indices.size(0))
    point_scores, point_indices = torch.topk(uncertainty_map[indices],
                                             k=num_points,
                                             dim=0)
    point_indices = indices[point_indices].unsqueeze(0)

    point_coords = torch.zeros(R,
                               num_points,
                               3,
                               dtype=torch.float,
                               device=uncertainty_map.device)
    # point_coords[:, :, 0] = h_step / 2.0 + (point_indices // (W * D)).to(torch.float) * h_step
    # point_coords[:, :, 1] = w_step / 2.0 + (point_indices % (W * D) // D).to(torch.float) * w_step
    # point_coords[:, :, 2] = d_step / 2.0 + (point_indices % D).to(torch.float) * d_step
    point_coords[:, :, 0] = (point_indices % W).to(torch.float)  # x
    point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float)  # y
    point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float)  # z
    # print (f"resolution {D} x {H} x {W}", point_scores.min(), point_scores.max())
    return point_indices, point_coords


def get_uncertain_point_coords_on_grid2D(uncertainty_map, num_points,
                                         **kwargs):
    """
    Find `num_points` most uncertain points from `uncertainty_map` grid.
    Args:
        uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
            values for a set of points on a regular H x W grid.
        num_points (int): The number of points P to select.
    Returns:
        point_indices (Tensor): A tensor of shape (N, P) that contains indices from
            [0, H x W) of the most uncertain points.
        point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
            coordinates of the most uncertain points from the H x W grid.
    """
    R, _, H, W = uncertainty_map.shape
    # h_step = 1.0 / float(H)
    # w_step = 1.0 / float(W)

    num_points = min(H * W, num_points)
    point_scores, point_indices = torch.topk(uncertainty_map.view(R, H * W),
                                             k=num_points,
                                             dim=1)
    point_coords = torch.zeros(R,
                               num_points,
                               2,
                               dtype=torch.long,
                               device=uncertainty_map.device)
    # point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
    # point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
    point_coords[:, :, 0] = (point_indices % W).to(torch.long)
    point_coords[:, :, 1] = (point_indices // W).to(torch.long)
    # print (point_scores.min(), point_scores.max())
    return point_indices, point_coords


def get_uncertain_point_coords_on_grid2D_faster(uncertainty_map, num_points,
                                                clip_min):
    """
    Find `num_points` most uncertain points from `uncertainty_map` grid.
    Args:
        uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
            values for a set of points on a regular H x W grid.
        num_points (int): The number of points P to select.
    Returns:
        point_indices (Tensor): A tensor of shape (N, P) that contains indices from
            [0, H x W) of the most uncertain points.
        point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
            coordinates of the most uncertain points from the H x W grid.
    """
    R, _, H, W = uncertainty_map.shape
    # h_step = 1.0 / float(H)
    # w_step = 1.0 / float(W)

    assert R == 1, "batchsize > 1 is not implemented!"
    uncertainty_map = uncertainty_map.view(H * W)
    indices = (uncertainty_map >= clip_min).nonzero().squeeze(1)
    num_points = min(num_points, indices.size(0))
    point_scores, point_indices = torch.topk(uncertainty_map[indices],
                                             k=num_points,
                                             dim=0)
    point_indices = indices[point_indices].unsqueeze(0)

    point_coords = torch.zeros(R,
                               num_points,
                               2,
                               dtype=torch.long,
                               device=uncertainty_map.device)
    # point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
    # point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
    point_coords[:, :, 0] = (point_indices % W).to(torch.long)
    point_coords[:, :, 1] = (point_indices // W).to(torch.long)
    # print (point_scores.min(), point_scores.max())
    return point_indices, point_coords


def calculate_uncertainty(logits, classes=None, balance_value=0.5):
    """
    We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
        foreground class in `classes`.
    Args:
        logits (Tensor): A tensor of shape (R, C, ...) or (R, 1, ...) for class-specific or
            class-agnostic, where R is the total number of predicted masks in all images and C is
            the number of foreground classes. The values are logits.
        classes (list): A list of length R that contains either predicted of ground truth class
            for eash predicted mask.
    Returns:
        scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
            the most uncertain locations having the highest uncertainty score.
    """
    if logits.shape[1] == 1:
        gt_class_logits = logits
    else:
        gt_class_logits = logits[
            torch.arange(logits.shape[0], device=logits.device),
            classes].unsqueeze(1)
    return -torch.abs(gt_class_logits - balance_value)