Spaces:
Runtime error
Runtime error
File size: 16,494 Bytes
2d5f249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
def plot_mask2D(mask,
title="",
point_coords=None,
figsize=10,
point_marker_size=5):
'''
Simple plotting tool to show intermediate mask predictions and points
where PointRend is applied.
Args:
mask (Tensor): mask prediction of shape HxW
title (str): title for the plot
point_coords ((Tensor, Tensor)): x and y point coordinates
figsize (int): size of the figure to plot
point_marker_size (int): marker size for points
'''
H, W = mask.shape
plt.figure(figsize=(figsize, figsize))
if title:
title += ", "
plt.title("{}resolution {}x{}".format(title, H, W), fontsize=30)
plt.ylabel(H, fontsize=30)
plt.xlabel(W, fontsize=30)
plt.xticks([], [])
plt.yticks([], [])
plt.imshow(mask.detach(),
interpolation="nearest",
cmap=plt.get_cmap('gray'))
if point_coords is not None:
plt.scatter(x=point_coords[0],
y=point_coords[1],
color="red",
s=point_marker_size,
clip_on=True)
plt.xlim(-0.5, W - 0.5)
plt.ylim(H - 0.5, -0.5)
plt.show()
def plot_mask3D(mask=None,
title="",
point_coords=None,
figsize=1500,
point_marker_size=8,
interactive=True):
'''
Simple plotting tool to show intermediate mask predictions and points
where PointRend is applied.
Args:
mask (Tensor): mask prediction of shape DxHxW
title (str): title for the plot
point_coords ((Tensor, Tensor, Tensor)): x and y and z point coordinates
figsize (int): size of the figure to plot
point_marker_size (int): marker size for points
'''
import trimesh
import vtkplotter
from skimage import measure
vp = vtkplotter.Plotter(title=title, size=(figsize, figsize))
vis_list = []
if mask is not None:
mask = mask.detach().to("cpu").numpy()
mask = mask.transpose(2, 1, 0)
# marching cube to find surface
verts, faces, normals, values = measure.marching_cubes_lewiner(
mask, 0.5, gradient_direction='ascent')
# create a mesh
mesh = trimesh.Trimesh(verts, faces)
mesh.visual.face_colors = [200, 200, 250, 100]
vis_list.append(mesh)
if point_coords is not None:
point_coords = torch.stack(point_coords, 1).to("cpu").numpy()
# import numpy as np
# select_x = np.logical_and(point_coords[:, 0] >= 16, point_coords[:, 0] <= 112)
# select_y = np.logical_and(point_coords[:, 1] >= 48, point_coords[:, 1] <= 272)
# select_z = np.logical_and(point_coords[:, 2] >= 16, point_coords[:, 2] <= 112)
# select = np.logical_and(np.logical_and(select_x, select_y), select_z)
# point_coords = point_coords[select, :]
pc = vtkplotter.Points(point_coords, r=point_marker_size, c='red')
vis_list.append(pc)
vp.show(*vis_list,
bg="white",
axes=1,
interactive=interactive,
azimuth=30,
elevation=30)
def create_grid3D(min, max, steps):
if type(min) is int:
min = (min, min, min) # (x, y, z)
if type(max) is int:
max = (max, max, max) # (x, y)
if type(steps) is int:
steps = (steps, steps, steps) # (x, y, z)
arrangeX = torch.linspace(min[0], max[0], steps[0]).long()
arrangeY = torch.linspace(min[1], max[1], steps[1]).long()
arrangeZ = torch.linspace(min[2], max[2], steps[2]).long()
gridD, girdH, gridW = torch.meshgrid([arrangeZ, arrangeY, arrangeX])
coords = torch.stack([gridW, girdH,
gridD]) # [2, steps[0], steps[1], steps[2]]
coords = coords.view(3, -1).t() # [N, 3]
return coords
def create_grid2D(min, max, steps):
if type(min) is int:
min = (min, min) # (x, y)
if type(max) is int:
max = (max, max) # (x, y)
if type(steps) is int:
steps = (steps, steps) # (x, y)
arrangeX = torch.linspace(min[0], max[0], steps[0]).long()
arrangeY = torch.linspace(min[1], max[1], steps[1]).long()
girdH, gridW = torch.meshgrid([arrangeY, arrangeX])
coords = torch.stack([gridW, girdH]) # [2, steps[0], steps[1]]
coords = coords.view(2, -1).t() # [N, 2]
return coords
class SmoothConv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3):
super().__init__()
assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
self.padding = (kernel_size - 1) // 2
weight = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**2)
self.register_buffer('weight', weight)
def forward(self, input):
return F.conv2d(input, self.weight, padding=self.padding)
class SmoothConv3D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3):
super().__init__()
assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
self.padding = (kernel_size - 1) // 2
weight = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**3)
self.register_buffer('weight', weight)
def forward(self, input):
return F.conv3d(input, self.weight, padding=self.padding)
def build_smooth_conv3D(in_channels=1,
out_channels=1,
kernel_size=3,
padding=1):
smooth_conv = torch.nn.Conv3d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding)
smooth_conv.weight.data = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**3)
smooth_conv.bias.data = torch.zeros(out_channels)
return smooth_conv
def build_smooth_conv2D(in_channels=1,
out_channels=1,
kernel_size=3,
padding=1):
smooth_conv = torch.nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding)
smooth_conv.weight.data = torch.ones(
(in_channels, out_channels, kernel_size, kernel_size),
dtype=torch.float32) / (kernel_size**2)
smooth_conv.bias.data = torch.zeros(out_channels)
return smooth_conv
def get_uncertain_point_coords_on_grid3D(uncertainty_map, num_points,
**kwargs):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty
values for a set of points on a regular H x W x D grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W x D) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W x D grid.
"""
R, _, D, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
# d_step = 1.0 / float(D)
num_points = min(D * H * W, num_points)
point_scores, point_indices = torch.topk(uncertainty_map.view(
R, D * H * W),
k=num_points,
dim=1)
point_coords = torch.zeros(R,
num_points,
3,
dtype=torch.float,
device=uncertainty_map.device)
# point_coords[:, :, 0] = h_step / 2.0 + (point_indices // (W * D)).to(torch.float) * h_step
# point_coords[:, :, 1] = w_step / 2.0 + (point_indices % (W * D) // D).to(torch.float) * w_step
# point_coords[:, :, 2] = d_step / 2.0 + (point_indices % D).to(torch.float) * d_step
point_coords[:, :, 0] = (point_indices % W).to(torch.float) # x
point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float) # y
point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float) # z
print(f"resolution {D} x {H} x {W}", point_scores.min(),
point_scores.max())
return point_indices, point_coords
def get_uncertain_point_coords_on_grid3D_faster(uncertainty_map, num_points,
clip_min):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W, D) that contains uncertainty
values for a set of points on a regular H x W x D grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W x D) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 3) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W x D grid.
"""
R, _, D, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
# d_step = 1.0 / float(D)
assert R == 1, "batchsize > 1 is not implemented!"
uncertainty_map = uncertainty_map.view(D * H * W)
indices = (uncertainty_map >= clip_min).nonzero().squeeze(1)
num_points = min(num_points, indices.size(0))
point_scores, point_indices = torch.topk(uncertainty_map[indices],
k=num_points,
dim=0)
point_indices = indices[point_indices].unsqueeze(0)
point_coords = torch.zeros(R,
num_points,
3,
dtype=torch.float,
device=uncertainty_map.device)
# point_coords[:, :, 0] = h_step / 2.0 + (point_indices // (W * D)).to(torch.float) * h_step
# point_coords[:, :, 1] = w_step / 2.0 + (point_indices % (W * D) // D).to(torch.float) * w_step
# point_coords[:, :, 2] = d_step / 2.0 + (point_indices % D).to(torch.float) * d_step
point_coords[:, :, 0] = (point_indices % W).to(torch.float) # x
point_coords[:, :, 1] = (point_indices % (H * W) // W).to(torch.float) # y
point_coords[:, :, 2] = (point_indices // (H * W)).to(torch.float) # z
# print (f"resolution {D} x {H} x {W}", point_scores.min(), point_scores.max())
return point_indices, point_coords
def get_uncertain_point_coords_on_grid2D(uncertainty_map, num_points,
**kwargs):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
values for a set of points on a regular H x W grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W grid.
"""
R, _, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
num_points = min(H * W, num_points)
point_scores, point_indices = torch.topk(uncertainty_map.view(R, H * W),
k=num_points,
dim=1)
point_coords = torch.zeros(R,
num_points,
2,
dtype=torch.long,
device=uncertainty_map.device)
# point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
# point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
point_coords[:, :, 0] = (point_indices % W).to(torch.long)
point_coords[:, :, 1] = (point_indices // W).to(torch.long)
# print (point_scores.min(), point_scores.max())
return point_indices, point_coords
def get_uncertain_point_coords_on_grid2D_faster(uncertainty_map, num_points,
clip_min):
"""
Find `num_points` most uncertain points from `uncertainty_map` grid.
Args:
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty
values for a set of points on a regular H x W grid.
num_points (int): The number of points P to select.
Returns:
point_indices (Tensor): A tensor of shape (N, P) that contains indices from
[0, H x W) of the most uncertain points.
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized
coordinates of the most uncertain points from the H x W grid.
"""
R, _, H, W = uncertainty_map.shape
# h_step = 1.0 / float(H)
# w_step = 1.0 / float(W)
assert R == 1, "batchsize > 1 is not implemented!"
uncertainty_map = uncertainty_map.view(H * W)
indices = (uncertainty_map >= clip_min).nonzero().squeeze(1)
num_points = min(num_points, indices.size(0))
point_scores, point_indices = torch.topk(uncertainty_map[indices],
k=num_points,
dim=0)
point_indices = indices[point_indices].unsqueeze(0)
point_coords = torch.zeros(R,
num_points,
2,
dtype=torch.long,
device=uncertainty_map.device)
# point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step
# point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step
point_coords[:, :, 0] = (point_indices % W).to(torch.long)
point_coords[:, :, 1] = (point_indices // W).to(torch.long)
# print (point_scores.min(), point_scores.max())
return point_indices, point_coords
def calculate_uncertainty(logits, classes=None, balance_value=0.5):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, C, ...) or (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
classes (list): A list of length R that contains either predicted of ground truth class
for eash predicted mask.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
if logits.shape[1] == 1:
gt_class_logits = logits
else:
gt_class_logits = logits[
torch.arange(logits.shape[0], device=logits.device),
classes].unsqueeze(1)
return -torch.abs(gt_class_logits - balance_value)
|