Spaces:
Runtime error
Runtime error
File size: 27,611 Bytes
da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 66ab6d4 da48dbe fb140f6 da48dbe 66ab6d4 fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe 66ab6d4 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe fb140f6 da48dbe 66ab6d4 da48dbe 66ab6d4 da48dbe 66ab6d4 fb140f6 66ab6d4 fb140f6 da48dbe 66ab6d4 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe c3d3e4a da48dbe c3d3e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
import numpy as np
import torch
import torchvision
import trimesh
import open3d as o3d
import tinyobjloader
import os.path as osp
import _pickle as cPickle
from termcolor import colored
from scipy.spatial import cKDTree
from pytorch3d.structures import Meshes
import torch.nn.functional as F
import lib.smplx as smplx
from lib.common.render_utils import Pytorch3dRasterizer
from pytorch3d.renderer.mesh import rasterize_meshes
from PIL import Image, ImageFont, ImageDraw
from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency
class Format:
end = '\033[0m'
start = '\033[4m'
class SMPLX:
def __init__(self):
self.current_dir = osp.join(osp.dirname(__file__), "../../data/smpl_related")
self.smpl_verts_path = osp.join(self.current_dir, "smpl_data/smpl_verts.npy")
self.smpl_faces_path = osp.join(self.current_dir, "smpl_data/smpl_faces.npy")
self.smplx_verts_path = osp.join(self.current_dir, "smpl_data/smplx_verts.npy")
self.smplx_faces_path = osp.join(self.current_dir, "smpl_data/smplx_faces.npy")
self.cmap_vert_path = osp.join(self.current_dir, "smpl_data/smplx_cmap.npy")
self.smplx_to_smplx_path = osp.join(self.current_dir, "smpl_data/smplx_to_smpl.pkl")
self.smplx_eyeball_fid_path = osp.join(self.current_dir, "smpl_data/eyeball_fid.npy")
self.smplx_fill_mouth_fid_path = osp.join(self.current_dir, "smpl_data/fill_mouth_fid.npy")
self.smplx_flame_vid_path = osp.join(
self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy"
)
self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl")
self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy")
self.smplx_vertex_lmkid_path = osp.join(
self.current_dir, "smpl_data/smplx_vertex_lmkid.npy"
)
self.smplx_faces = np.load(self.smplx_faces_path)
self.smplx_verts = np.load(self.smplx_verts_path)
self.smpl_verts = np.load(self.smpl_verts_path)
self.smpl_faces = np.load(self.smpl_faces_path)
self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path)
self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path)
self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path)
self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True)
self.smplx_mano_vid = np.concatenate(
[self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]]
)
self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True)
self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)]
# hands
self.mano_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
0, torch.tensor(self.smplx_mano_vid), 1.0
)
# face
self.front_flame_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
0, torch.tensor(self.smplx_front_flame_vid), 1.0
)
self.eyeball_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
0, torch.tensor(self.smplx_faces[self.smplx_eyeball_fid_mask].flatten()), 1.0
)
self.smplx_to_smpl = cPickle.load(open(self.smplx_to_smplx_path, "rb"))
self.model_dir = osp.join(self.current_dir, "models")
self.tedra_dir = osp.join(self.current_dir, "../tedra_data")
self.ghum_smpl_pairs = torch.tensor(
[
(0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16), (12, 17), (13, 18), (14, 19),
(15, 20), (16, 21), (17, 39), (18, 44), (19, 36), (20, 41), (21, 35), (22, 40),
(23, 1), (24, 2), (25, 4), (26, 5), (27, 7), (28, 8), (29, 31), (30, 34), (31, 29),
(32, 32)
]
).long()
# smpl-smplx correspondence
self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73]
self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68]
self.smpl_joint_ids_45 = np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist()
self.extra_joint_ids = np.array(
[
61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72,
74, 73
]
)
self.extra_joint_ids += 68
self.smpl_joint_ids_45_pixie = (np.arange(22).tolist() + self.extra_joint_ids.tolist())
def cmap_smpl_vids(self, type):
# smplx_to_smpl.pkl
# KEYS:
# closest_faces - [6890, 3] with smplx vert_idx
# bc - [6890, 3] with barycentric weights
cmap_smplx = torch.as_tensor(np.load(self.cmap_vert_path)).float()
if type == "smplx":
return cmap_smplx
elif type == "smpl":
bc = torch.as_tensor(self.smplx_to_smpl["bc"].astype(np.float32))
closest_faces = self.smplx_to_smpl["closest_faces"].astype(np.int32)
cmap_smpl = torch.einsum("bij, bi->bj", cmap_smplx[closest_faces], bc)
return cmap_smpl
model_init_params = dict(
gender="male",
model_type="smplx",
model_path=SMPLX().model_dir,
create_global_orient=False,
create_body_pose=False,
create_betas=False,
create_left_hand_pose=False,
create_right_hand_pose=False,
create_expression=False,
create_jaw_pose=False,
create_leye_pose=False,
create_reye_pose=False,
create_transl=False,
num_pca_comps=12,
)
def get_smpl_model(model_type, gender):
return smplx.create(**model_init_params)
def load_fit_body(fitted_path, scale, smpl_type="smplx", smpl_gender="neutral", noise_dict=None):
param = np.load(fitted_path, allow_pickle=True)
for key in param.keys():
param[key] = torch.as_tensor(param[key])
smpl_model = get_smpl_model(smpl_type, smpl_gender)
model_forward_params = dict(
betas=param["betas"],
global_orient=param["global_orient"],
body_pose=param["body_pose"],
left_hand_pose=param["left_hand_pose"],
right_hand_pose=param["right_hand_pose"],
jaw_pose=param["jaw_pose"],
leye_pose=param["leye_pose"],
reye_pose=param["reye_pose"],
expression=param["expression"],
return_verts=True,
)
if noise_dict is not None:
model_forward_params.update(noise_dict)
smpl_out = smpl_model(**model_forward_params)
smpl_verts = ((smpl_out.vertices[0] * param["scale"] + param["translation"]) * scale).detach()
smpl_joints = ((smpl_out.joints[0] * param["scale"] + param["translation"]) * scale).detach()
smpl_mesh = trimesh.Trimesh(smpl_verts, smpl_model.faces, process=False, maintain_order=True)
return smpl_mesh, smpl_joints
def apply_face_mask(mesh, face_mask):
mesh.update_faces(face_mask)
mesh.remove_unreferenced_vertices()
return mesh
def apply_vertex_mask(mesh, vertex_mask):
faces_mask = vertex_mask[mesh.faces].any(dim=1)
mesh = apply_face_mask(mesh, faces_mask)
return mesh
def apply_vertex_face_mask(mesh, vertex_mask, face_mask):
faces_mask = vertex_mask[mesh.faces].any(dim=1) * torch.tensor(face_mask)
mesh.update_faces(faces_mask)
mesh.remove_unreferenced_vertices()
return mesh
def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True):
smpl_tree = cKDTree(smpl_obj.vertices)
SMPL_container = SMPLX()
from lib.dataset.PointFeat import PointFeat
part_extractor = PointFeat(
torch.tensor(part_mesh.vertices).unsqueeze(0).to(device),
torch.tensor(part_mesh.faces).unsqueeze(0).to(device)
)
(part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device))
remove_mask = part_dist < thres
if region == "hand":
_, idx = smpl_tree.query(full_mesh.vertices, k=1)
full_lmkid = SMPL_container.smplx_vertex_lmkid[idx]
remove_mask = torch.logical_and(
remove_mask,
torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0)
)
elif region == "face":
_, idx = smpl_tree.query(full_mesh.vertices, k=5)
face_space_mask = torch.isin(
torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid)
)
remove_mask = torch.logical_and(
remove_mask,
face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0)
)
BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1)
full_mesh.update_faces(BNI_part_mask.detach().cpu())
full_mesh.remove_unreferenced_vertices()
if clean:
full_mesh = clean_floats(full_mesh)
return full_mesh
def obj_loader(path, with_uv=True):
# Create reader.
reader = tinyobjloader.ObjReader()
# Load .obj(and .mtl) using default configuration
ret = reader.ParseFromFile(path)
# note here for wavefront obj, #v might not equal to #vt, same as #vn.
attrib = reader.GetAttrib()
v = np.array(attrib.vertices).reshape(-1, 3)
vt = np.array(attrib.texcoords).reshape(-1, 2)
shapes = reader.GetShapes()
tri = shapes[0].mesh.numpy_indices().reshape(-1, 9)
f_v = tri[:, [0, 3, 6]]
f_vt = tri[:, [2, 5, 8]]
if with_uv:
face_uvs = vt[f_vt].mean(axis=1) #[m, 2]
vert_uvs = np.zeros((v.shape[0], 2), dtype=np.float32) #[n, 2]
vert_uvs[f_v.reshape(-1)] = vt[f_vt.reshape(-1)]
return v, f_v, vert_uvs, face_uvs
else:
return v, f_v
class HoppeMesh:
def __init__(self, verts, faces, uvs=None, texture=None):
"""
The HoppeSDF calculates signed distance towards a predefined oriented point cloud
http://hhoppe.com/recon.pdf
For clean and high-resolution pcl data, this is the fastest and accurate approximation of sdf
"""
# self.device = torch.device("cuda:0")
mesh = trimesh.Trimesh(verts, faces, process=False, maintains_order=True)
self.verts = torch.tensor(verts).float()
self.faces = torch.tensor(faces).long()
self.vert_normals = torch.tensor(mesh.vertex_normals).float()
if (uvs is not None) and (texture is not None):
self.vertex_colors = trimesh.visual.color.uv_to_color(uvs, texture)
self.face_normals = torch.tensor(mesh.face_normals).float()
def get_colors(self, points, faces):
"""
Get colors of surface points from texture image through
barycentric interpolation.
- points: [n, 3]
- return: [n, 4] rgba
"""
triangles = self.verts[faces] #[n, 3, 3]
barycentric = trimesh.triangles.points_to_barycentric(triangles, points) #[n, 3]
vert_colors = self.vertex_colors[faces] #[n, 3, 4]
point_colors = torch.tensor((barycentric[:, :, None] * vert_colors).sum(axis=1)).float()
return point_colors
def triangles(self):
return self.verts[self.faces].numpy() #[n, 3, 3]
def tensor2variable(tensor, device):
return tensor.requires_grad_(True).to(device)
def mesh_edge_loss(meshes, target_length: float = 0.0):
"""
Computes mesh edge length regularization loss averaged across all meshes
in a batch. Each mesh contributes equally to the final loss, regardless of
the number of edges per mesh in the batch by weighting each mesh with the
inverse number of edges. For example, if mesh 3 (out of N) has only E=4
edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to
contribute to the final loss.
Args:
meshes: Meshes object with a batch of meshes.
target_length: Resting value for the edge length.
Returns:
loss: Average loss across the batch. Returns 0 if meshes contains
no meshes or all empty meshes.
"""
if meshes.isempty():
return torch.tensor([0.0], dtype=torch.float32, device=meshes.device, requires_grad=True)
N = len(meshes)
edges_packed = meshes.edges_packed() # (sum(E_n), 3)
verts_packed = meshes.verts_packed() # (sum(V_n), 3)
edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), )
num_edges_per_mesh = meshes.num_edges_per_mesh() # N
# Determine the weight for each edge based on the number of edges in the
# mesh it corresponds to.
# TODO (nikhilar) Find a faster way of computing the weights for each edge
# as this is currently a bottleneck for meshes with a large number of faces.
weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx)
weights = 1.0 / weights.float()
verts_edges = verts_packed[edges_packed]
v0, v1 = verts_edges.unbind(1)
loss = ((v0 - v1).norm(dim=1, p=2) - target_length)**2.0
loss_vertex = loss * weights
# loss_outlier = torch.topk(loss, 100)[0].mean()
# loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N
loss_all = loss_vertex.sum() / N
return loss_all
def remesh_laplacian(mesh, obj_path):
mesh = mesh.simplify_quadratic_decimation(50000)
mesh = trimesh.smoothing.filter_humphrey(
mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None
)
mesh.export(obj_path)
return mesh
def poisson(mesh, obj_path, depth=10):
pcd_path = obj_path[:-4] + ".ply"
assert (mesh.vertex_normals.shape[1] == 3)
mesh.export(pcd_path)
pcl = o3d.io.read_point_cloud(pcd_path)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Error) as cm:
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcl, depth=depth, n_threads=-1
)
print(colored(f"\n Poisson completion to {Format.start} {obj_path} {Format.end}", "yellow"))
# only keep the largest component
largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles)))
largest_mesh.export(obj_path)
# mesh decimation for faster rendering
low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000)
return low_res_mesh
# Losses to smooth / regularize the mesh shape
def update_mesh_shape_prior_losses(mesh, losses):
# and (b) the edge length of the predicted mesh
losses["edge"]["value"] = mesh_edge_loss(mesh)
# mesh normal consistency
losses["nc"]["value"] = mesh_normal_consistency(mesh)
# mesh laplacian smoothing
losses["lapla"]["value"] = mesh_laplacian_smoothing(mesh, method="uniform")
def read_smpl_constants(folder):
"""Load smpl vertex code"""
smpl_vtx_std = np.loadtxt(os.path.join(folder, "vertices.txt"))
min_x = np.min(smpl_vtx_std[:, 0])
max_x = np.max(smpl_vtx_std[:, 0])
min_y = np.min(smpl_vtx_std[:, 1])
max_y = np.max(smpl_vtx_std[:, 1])
min_z = np.min(smpl_vtx_std[:, 2])
max_z = np.max(smpl_vtx_std[:, 2])
smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x)
smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y)
smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z)
smpl_vertex_code = np.float32(np.copy(smpl_vtx_std))
"""Load smpl faces & tetrahedrons"""
smpl_faces = np.loadtxt(os.path.join(folder, "faces.txt"), dtype=np.int32) - 1
smpl_face_code = (
smpl_vertex_code[smpl_faces[:, 0]] + smpl_vertex_code[smpl_faces[:, 1]] +
smpl_vertex_code[smpl_faces[:, 2]]
) / 3.0
smpl_tetras = (np.loadtxt(os.path.join(folder, "tetrahedrons.txt"), dtype=np.int32) - 1)
return_dict = {
"smpl_vertex_code": torch.tensor(smpl_vertex_code),
"smpl_face_code": torch.tensor(smpl_face_code),
"smpl_faces": torch.tensor(smpl_faces),
"smpl_tetras": torch.tensor(smpl_tetras)
}
return return_dict
def get_visibility(xy, z, faces, img_res=2**12, blur_radius=0.0, faces_per_pixel=1):
"""get the visibility of vertices
Args:
xy (torch.tensor): [B, N,2]
z (torch.tensor): [B, N,1]
faces (torch.tensor): [B, N,3]
size (int): resolution of rendered image
"""
if xy.ndimension() == 2:
xy = xy.unsqueeze(0)
z = z.unsqueeze(0)
faces = faces.unsqueeze(0)
xyz = (torch.cat((xy, -z), dim=-1) + 1.) / 2.
N_body = xyz.shape[0]
faces = faces.long().repeat(N_body, 1, 1)
vis_mask = torch.zeros(size=(N_body, z.shape[1]))
rasterizer = Pytorch3dRasterizer(image_size=img_res)
meshes_screen = Meshes(verts=xyz, faces=faces)
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=rasterizer.raster_settings.image_size,
blur_radius=blur_radius,
faces_per_pixel=faces_per_pixel,
bin_size=rasterizer.raster_settings.bin_size,
max_faces_per_bin=rasterizer.raster_settings.max_faces_per_bin,
perspective_correct=rasterizer.raster_settings.perspective_correct,
cull_backfaces=rasterizer.raster_settings.cull_backfaces,
)
pix_to_face = pix_to_face.detach().cpu().view(N_body, -1)
faces = faces.detach().cpu()
for idx in range(N_body):
Num_faces = len(faces[idx])
vis_vertices_id = torch.unique(
faces[idx][torch.unique(pix_to_face[idx][pix_to_face[idx] != -1]) - Num_faces * idx, :]
)
vis_mask[idx, vis_vertices_id] = 1.0
# print("------------------------\n")
# print(f"keep points : {vis_mask.sum()/len(vis_mask)}")
return vis_mask
def barycentric_coordinates_of_projection(points, vertices):
"""https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py"""
"""Given a point, gives projected coords of that point to a triangle
in barycentric coordinates.
See
**Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05
at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf
:param p: point to project. [B, 3]
:param v0: first vertex of triangles. [B, 3]
:returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v``
vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN``
"""
# (p, q, u, v)
v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2]
u = v1 - v0
v = v2 - v0
n = torch.cross(u, v)
sb = torch.sum(n * n, dim=1)
# If the triangle edges are collinear, cross-product is zero,
# which makes "s" 0, which gives us divide by zero. So we
# make the arbitrary choice to set s to epsv (=numpy.spacing(1)),
# the closest thing to zero
sb[sb == 0] = 1e-6
oneOver4ASquared = 1.0 / sb
w = points - v0
b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared
b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared
weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1)
# check barycenric weights
# p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3]
return weights
def orthogonal(points, calibrations, transforms=None):
"""
Compute the orthogonal projections of 3D points into the image plane by given projection matrix
:param points: [B, 3, N] Tensor of 3D points
:param calibrations: [B, 3, 4] Tensor of projection matrix
:param transforms: [B, 2, 3] Tensor of image transform matrix
:return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane
"""
rot = calibrations[:, :3, :3]
trans = calibrations[:, :3, 3:4]
pts = torch.baddbmm(trans, rot, points) # [B, 3, N]
if transforms is not None:
scale = transforms[:2, :2]
shift = transforms[:2, 2:3]
pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :])
return pts
def projection(points, calib):
if torch.is_tensor(points):
calib = torch.as_tensor(calib) if not torch.is_tensor(calib) else calib
return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3]
else:
return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3]
def load_calib(calib_path):
calib_data = np.loadtxt(calib_path, dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
calib_mat = np.matmul(intrinsic, extrinsic)
calib_mat = torch.from_numpy(calib_mat).float()
return calib_mat
def normalize_v3(arr):
""" Normalize a numpy array of 3 component vectors shape=(n,3) """
lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2)
eps = 0.00000001
lens[lens < eps] = eps
arr[:, 0] /= lens
arr[:, 1] /= lens
arr[:, 2] /= lens
return arr
def compute_normal(vertices, faces):
# Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal
vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype)
# Create an indexed view into the vertex array using the array of three indices for triangles
tris = vertices[faces]
# Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle
face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0])
# n is now an array of normals per triangle. The length of each normal is dependent the vertices,
# we need to normalize these, so that our next step weights each normal equally.
normalize_v3(face_norms)
# now we have a normalized array of normals, one per triangle, i.e., per triangle normals.
# But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle,
# the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards.
# The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array
vert_norms[faces[:, 0]] += face_norms
vert_norms[faces[:, 1]] += face_norms
vert_norms[faces[:, 2]] += face_norms
normalize_v3(vert_norms)
return vert_norms, face_norms
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, vertices.shape[-1]))
return vertices[faces.long()]
def compute_normal_batch(vertices, faces):
if faces.shape[0] != vertices.shape[0]:
faces = faces.repeat(vertices.shape[0], 1, 1)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
vert_norm = torch.zeros(bs * nv, 3).type_as(vertices)
tris = face_vertices(vertices, faces)
face_norm = F.normalize(
torch.cross(tris[:, :, 1] - tris[:, :, 0], tris[:, :, 2] - tris[:, :, 0]),
dim=-1,
)
faces = (faces + (torch.arange(bs).type_as(faces) * nv)[:, None, None]).view(-1, 3)
vert_norm[faces[:, 0]] += face_norm.view(-1, 3)
vert_norm[faces[:, 1]] += face_norm.view(-1, 3)
vert_norm[faces[:, 2]] += face_norm.view(-1, 3)
vert_norm = F.normalize(vert_norm, dim=-1).view(bs, nv, 3)
return vert_norm
def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type="smpl"):
font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf")
font = ImageFont.truetype(font_path, 30)
grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), nrow=nrow, padding=0)
grid_img = Image.fromarray(
((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * 255.0).astype(np.uint8)
)
if False:
# add text
draw = ImageDraw.Draw(grid_img)
grid_size = 512
if loss is not None:
draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font)
if type == "smpl":
for col_id, col_txt in enumerate(
[
"image",
"smpl-norm(render)",
"cloth-norm(pred)",
"diff-norm",
"diff-mask",
]
):
draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
elif type == "cloth":
for col_id, col_txt in enumerate(
["image", "cloth-norm(recon)", "cloth-norm(pred)", "diff-norm"]
):
draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
for col_id, col_txt in enumerate(["0", "90", "180", "270"]):
draw.text(
(10 + (col_id * grid_size), grid_size * 2 + 5),
col_txt,
(255, 0, 0),
font=font,
)
else:
print(f"{type} should be 'smpl' or 'cloth'")
grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), Image.ANTIALIAS)
return grid_img
def clean_mesh(verts, faces):
device = verts.device
mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), faces.detach().cpu().numpy())
largest_mesh = keep_largest(mesh_lst)
final_verts = torch.as_tensor(largest_mesh.vertices).float().to(device)
final_faces = torch.as_tensor(largest_mesh.faces).long().to(device)
return final_verts, final_faces
def clean_floats(mesh):
thres = mesh.vertices.shape[0] * 1e-2
mesh_lst = mesh.split(only_watertight=False)
clean_mesh_lst = [mesh for mesh in mesh_lst if mesh.vertices.shape[0] > thres]
return sum(clean_mesh_lst)
def keep_largest(mesh):
mesh_lst = mesh.split(only_watertight=False)
keep_mesh = mesh_lst[0]
for mesh in mesh_lst:
if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]:
keep_mesh = mesh
return keep_mesh
def mesh_move(mesh_lst, step, scale=1.0):
trans = np.array([1.0, 0.0, 0.0]) * step
resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=trans)
results = []
for mesh in mesh_lst:
mesh.apply_transform(resize_matrix)
results.append(mesh)
return results
def rescale_smpl(fitted_path, scale=100, translate=(0, 0, 0)):
fitted_body = trimesh.load(fitted_path, process=False, maintain_order=True, skip_materials=True)
resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=translate)
fitted_body.apply_transform(resize_matrix)
return np.array(fitted_body.vertices)
def get_joint_mesh(joints, radius=2.0):
ball = trimesh.creation.icosphere(radius=radius)
combined = None
for joint in joints:
ball_new = trimesh.Trimesh(vertices=ball.vertices + joint, faces=ball.faces, process=False)
if combined is None:
combined = ball_new
else:
combined = sum([combined, ball_new])
return combined
|