File size: 27,611 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
fb140f6
 
da48dbe
 
fb140f6
66ab6d4
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
66ab6d4
fb140f6
 
 
da48dbe
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
fb140f6
 
 
da48dbe
 
 
 
 
66ab6d4
da48dbe
 
 
 
fb140f6
 
 
da48dbe
 
 
 
fb140f6
 
 
da48dbe
fb140f6
 
 
 
 
 
da48dbe
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ab6d4
da48dbe
66ab6d4
 
da48dbe
 
66ab6d4
da48dbe
 
fb140f6
 
da48dbe
66ab6d4
da48dbe
66ab6d4
da48dbe
66ab6d4
 
 
fb140f6
 
 
 
66ab6d4
 
 
fb140f6
 
 
 
 
 
 
da48dbe
66ab6d4
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
fb140f6
 
 
 
 
da48dbe
fb140f6
da48dbe
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
fb140f6
 
 
da48dbe
fb140f6
 
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
fb140f6
 
da48dbe
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
c3d3e4a
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4a
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import os
import numpy as np
import torch
import torchvision
import trimesh
import open3d as o3d
import tinyobjloader
import os.path as osp
import _pickle as cPickle
from termcolor import colored
from scipy.spatial import cKDTree

from pytorch3d.structures import Meshes
import torch.nn.functional as F
import lib.smplx as smplx
from lib.common.render_utils import Pytorch3dRasterizer
from pytorch3d.renderer.mesh import rasterize_meshes
from PIL import Image, ImageFont, ImageDraw
from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency


class Format:
    end = '\033[0m'
    start = '\033[4m'


class SMPLX:
    def __init__(self):

        self.current_dir = osp.join(osp.dirname(__file__), "../../data/smpl_related")

        self.smpl_verts_path = osp.join(self.current_dir, "smpl_data/smpl_verts.npy")
        self.smpl_faces_path = osp.join(self.current_dir, "smpl_data/smpl_faces.npy")
        self.smplx_verts_path = osp.join(self.current_dir, "smpl_data/smplx_verts.npy")
        self.smplx_faces_path = osp.join(self.current_dir, "smpl_data/smplx_faces.npy")
        self.cmap_vert_path = osp.join(self.current_dir, "smpl_data/smplx_cmap.npy")

        self.smplx_to_smplx_path = osp.join(self.current_dir, "smpl_data/smplx_to_smpl.pkl")

        self.smplx_eyeball_fid_path = osp.join(self.current_dir, "smpl_data/eyeball_fid.npy")
        self.smplx_fill_mouth_fid_path = osp.join(self.current_dir, "smpl_data/fill_mouth_fid.npy")
        self.smplx_flame_vid_path = osp.join(
            self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy"
        )
        self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl")
        self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy")
        self.smplx_vertex_lmkid_path = osp.join(
            self.current_dir, "smpl_data/smplx_vertex_lmkid.npy"
        )

        self.smplx_faces = np.load(self.smplx_faces_path)
        self.smplx_verts = np.load(self.smplx_verts_path)
        self.smpl_verts = np.load(self.smpl_verts_path)
        self.smpl_faces = np.load(self.smpl_faces_path)
        self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path)

        self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path)
        self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path)
        self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True)
        self.smplx_mano_vid = np.concatenate(
            [self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]]
        )
        self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True)
        self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)]

        # hands
        self.mano_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
            0, torch.tensor(self.smplx_mano_vid), 1.0
        )
        # face
        self.front_flame_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
            0, torch.tensor(self.smplx_front_flame_vid), 1.0
        )
        self.eyeball_vertex_mask = torch.zeros(self.smplx_verts.shape[0], ).index_fill_(
            0, torch.tensor(self.smplx_faces[self.smplx_eyeball_fid_mask].flatten()), 1.0
        )

        self.smplx_to_smpl = cPickle.load(open(self.smplx_to_smplx_path, "rb"))

        self.model_dir = osp.join(self.current_dir, "models")
        self.tedra_dir = osp.join(self.current_dir, "../tedra_data")

        self.ghum_smpl_pairs = torch.tensor(
            [
                (0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16), (12, 17), (13, 18), (14, 19),
                (15, 20), (16, 21), (17, 39), (18, 44), (19, 36), (20, 41), (21, 35), (22, 40),
                (23, 1), (24, 2), (25, 4), (26, 5), (27, 7), (28, 8), (29, 31), (30, 34), (31, 29),
                (32, 32)
            ]
        ).long()

        # smpl-smplx correspondence
        self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73]
        self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68]
        self.smpl_joint_ids_45 = np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist()

        self.extra_joint_ids = np.array(
            [
                61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72,
                74, 73
            ]
        )

        self.extra_joint_ids += 68

        self.smpl_joint_ids_45_pixie = (np.arange(22).tolist() + self.extra_joint_ids.tolist())

    def cmap_smpl_vids(self, type):

        # smplx_to_smpl.pkl
        # KEYS:
        # closest_faces -   [6890, 3] with smplx vert_idx
        # bc            -   [6890, 3] with barycentric weights

        cmap_smplx = torch.as_tensor(np.load(self.cmap_vert_path)).float()

        if type == "smplx":
            return cmap_smplx

        elif type == "smpl":
            bc = torch.as_tensor(self.smplx_to_smpl["bc"].astype(np.float32))
            closest_faces = self.smplx_to_smpl["closest_faces"].astype(np.int32)
            cmap_smpl = torch.einsum("bij, bi->bj", cmap_smplx[closest_faces], bc)
            return cmap_smpl


model_init_params = dict(
    gender="male",
    model_type="smplx",
    model_path=SMPLX().model_dir,
    create_global_orient=False,
    create_body_pose=False,
    create_betas=False,
    create_left_hand_pose=False,
    create_right_hand_pose=False,
    create_expression=False,
    create_jaw_pose=False,
    create_leye_pose=False,
    create_reye_pose=False,
    create_transl=False,
    num_pca_comps=12,
)


def get_smpl_model(model_type, gender):
    return smplx.create(**model_init_params)


def load_fit_body(fitted_path, scale, smpl_type="smplx", smpl_gender="neutral", noise_dict=None):

    param = np.load(fitted_path, allow_pickle=True)
    for key in param.keys():
        param[key] = torch.as_tensor(param[key])

    smpl_model = get_smpl_model(smpl_type, smpl_gender)
    model_forward_params = dict(
        betas=param["betas"],
        global_orient=param["global_orient"],
        body_pose=param["body_pose"],
        left_hand_pose=param["left_hand_pose"],
        right_hand_pose=param["right_hand_pose"],
        jaw_pose=param["jaw_pose"],
        leye_pose=param["leye_pose"],
        reye_pose=param["reye_pose"],
        expression=param["expression"],
        return_verts=True,
    )

    if noise_dict is not None:
        model_forward_params.update(noise_dict)

    smpl_out = smpl_model(**model_forward_params)

    smpl_verts = ((smpl_out.vertices[0] * param["scale"] + param["translation"]) * scale).detach()
    smpl_joints = ((smpl_out.joints[0] * param["scale"] + param["translation"]) * scale).detach()
    smpl_mesh = trimesh.Trimesh(smpl_verts, smpl_model.faces, process=False, maintain_order=True)

    return smpl_mesh, smpl_joints


def apply_face_mask(mesh, face_mask):

    mesh.update_faces(face_mask)
    mesh.remove_unreferenced_vertices()

    return mesh


def apply_vertex_mask(mesh, vertex_mask):

    faces_mask = vertex_mask[mesh.faces].any(dim=1)
    mesh = apply_face_mask(mesh, faces_mask)

    return mesh


def apply_vertex_face_mask(mesh, vertex_mask, face_mask):

    faces_mask = vertex_mask[mesh.faces].any(dim=1) * torch.tensor(face_mask)
    mesh.update_faces(faces_mask)
    mesh.remove_unreferenced_vertices()

    return mesh


def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True):

    smpl_tree = cKDTree(smpl_obj.vertices)
    SMPL_container = SMPLX()

    from lib.dataset.PointFeat import PointFeat

    part_extractor = PointFeat(
        torch.tensor(part_mesh.vertices).unsqueeze(0).to(device),
        torch.tensor(part_mesh.faces).unsqueeze(0).to(device)
    )

    (part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device))

    remove_mask = part_dist < thres

    if region == "hand":
        _, idx = smpl_tree.query(full_mesh.vertices, k=1)
        full_lmkid = SMPL_container.smplx_vertex_lmkid[idx]
        remove_mask = torch.logical_and(
            remove_mask,
            torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0)
        )

    elif region == "face":
        _, idx = smpl_tree.query(full_mesh.vertices, k=5)
        face_space_mask = torch.isin(
            torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid)
        )
        remove_mask = torch.logical_and(
            remove_mask,
            face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0)
        )

    BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1)
    full_mesh.update_faces(BNI_part_mask.detach().cpu())
    full_mesh.remove_unreferenced_vertices()

    if clean:
        full_mesh = clean_floats(full_mesh)

    return full_mesh


def obj_loader(path, with_uv=True):
    # Create reader.
    reader = tinyobjloader.ObjReader()

    # Load .obj(and .mtl) using default configuration
    ret = reader.ParseFromFile(path)

    # note here for wavefront obj, #v might not equal to #vt, same as #vn.
    attrib = reader.GetAttrib()
    v = np.array(attrib.vertices).reshape(-1, 3)
    vt = np.array(attrib.texcoords).reshape(-1, 2)

    shapes = reader.GetShapes()
    tri = shapes[0].mesh.numpy_indices().reshape(-1, 9)
    f_v = tri[:, [0, 3, 6]]
    f_vt = tri[:, [2, 5, 8]]

    if with_uv:
        face_uvs = vt[f_vt].mean(axis=1)    #[m, 2]
        vert_uvs = np.zeros((v.shape[0], 2), dtype=np.float32)    #[n, 2]
        vert_uvs[f_v.reshape(-1)] = vt[f_vt.reshape(-1)]

        return v, f_v, vert_uvs, face_uvs
    else:
        return v, f_v


class HoppeMesh:
    def __init__(self, verts, faces, uvs=None, texture=None):
        """
        The HoppeSDF calculates signed distance towards a predefined oriented point cloud
        http://hhoppe.com/recon.pdf
        For clean and high-resolution pcl data, this is the fastest and accurate approximation of sdf
        """

        # self.device = torch.device("cuda:0")
        mesh = trimesh.Trimesh(verts, faces, process=False, maintains_order=True)
        self.verts = torch.tensor(verts).float()
        self.faces = torch.tensor(faces).long()
        self.vert_normals = torch.tensor(mesh.vertex_normals).float()

        if (uvs is not None) and (texture is not None):
            self.vertex_colors = trimesh.visual.color.uv_to_color(uvs, texture)
            self.face_normals = torch.tensor(mesh.face_normals).float()

    def get_colors(self, points, faces):
        """
        Get colors of surface points from texture image through 
        barycentric interpolation.
        - points: [n, 3]
        - return: [n, 4] rgba
        """
        triangles = self.verts[faces]    #[n, 3, 3]
        barycentric = trimesh.triangles.points_to_barycentric(triangles, points)    #[n, 3]
        vert_colors = self.vertex_colors[faces]    #[n, 3, 4]
        point_colors = torch.tensor((barycentric[:, :, None] * vert_colors).sum(axis=1)).float()
        return point_colors

    def triangles(self):
        return self.verts[self.faces].numpy()    #[n, 3, 3]


def tensor2variable(tensor, device):
    return tensor.requires_grad_(True).to(device)


def mesh_edge_loss(meshes, target_length: float = 0.0):
    """
    Computes mesh edge length regularization loss averaged across all meshes
    in a batch. Each mesh contributes equally to the final loss, regardless of
    the number of edges per mesh in the batch by weighting each mesh with the
    inverse number of edges. For example, if mesh 3 (out of N) has only E=4
    edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to
    contribute to the final loss.

    Args:
        meshes: Meshes object with a batch of meshes.
        target_length: Resting value for the edge length.

    Returns:
        loss: Average loss across the batch. Returns 0 if meshes contains
        no meshes or all empty meshes.
    """
    if meshes.isempty():
        return torch.tensor([0.0], dtype=torch.float32, device=meshes.device, requires_grad=True)

    N = len(meshes)
    edges_packed = meshes.edges_packed()    # (sum(E_n), 3)
    verts_packed = meshes.verts_packed()    # (sum(V_n), 3)
    edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx()    # (sum(E_n), )
    num_edges_per_mesh = meshes.num_edges_per_mesh()    # N

    # Determine the weight for each edge based on the number of edges in the
    # mesh it corresponds to.
    # TODO (nikhilar) Find a faster way of computing the weights for each edge
    # as this is currently a bottleneck for meshes with a large number of faces.
    weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx)
    weights = 1.0 / weights.float()

    verts_edges = verts_packed[edges_packed]
    v0, v1 = verts_edges.unbind(1)
    loss = ((v0 - v1).norm(dim=1, p=2) - target_length)**2.0
    loss_vertex = loss * weights
    # loss_outlier = torch.topk(loss, 100)[0].mean()
    # loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N
    loss_all = loss_vertex.sum() / N

    return loss_all


def remesh_laplacian(mesh, obj_path):

    mesh = mesh.simplify_quadratic_decimation(50000)
    mesh = trimesh.smoothing.filter_humphrey(
        mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None
    )
    mesh.export(obj_path)

    return mesh


def poisson(mesh, obj_path, depth=10):

    pcd_path = obj_path[:-4] + ".ply"
    assert (mesh.vertex_normals.shape[1] == 3)
    mesh.export(pcd_path)
    pcl = o3d.io.read_point_cloud(pcd_path)
    with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Error) as cm:
        mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcl, depth=depth, n_threads=-1
        )
    print(colored(f"\n Poisson completion to {Format.start} {obj_path} {Format.end}", "yellow"))

    # only keep the largest component
    largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles)))
    largest_mesh.export(obj_path)

    # mesh decimation for faster rendering
    low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000)

    return low_res_mesh


# Losses to smooth / regularize the mesh shape
def update_mesh_shape_prior_losses(mesh, losses):

    # and (b) the edge length of the predicted mesh
    losses["edge"]["value"] = mesh_edge_loss(mesh)
    # mesh normal consistency
    losses["nc"]["value"] = mesh_normal_consistency(mesh)
    # mesh laplacian smoothing
    losses["lapla"]["value"] = mesh_laplacian_smoothing(mesh, method="uniform")


def read_smpl_constants(folder):
    """Load smpl vertex code"""
    smpl_vtx_std = np.loadtxt(os.path.join(folder, "vertices.txt"))
    min_x = np.min(smpl_vtx_std[:, 0])
    max_x = np.max(smpl_vtx_std[:, 0])
    min_y = np.min(smpl_vtx_std[:, 1])
    max_y = np.max(smpl_vtx_std[:, 1])
    min_z = np.min(smpl_vtx_std[:, 2])
    max_z = np.max(smpl_vtx_std[:, 2])

    smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x)
    smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y)
    smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z)
    smpl_vertex_code = np.float32(np.copy(smpl_vtx_std))
    """Load smpl faces & tetrahedrons"""
    smpl_faces = np.loadtxt(os.path.join(folder, "faces.txt"), dtype=np.int32) - 1
    smpl_face_code = (
        smpl_vertex_code[smpl_faces[:, 0]] + smpl_vertex_code[smpl_faces[:, 1]] +
        smpl_vertex_code[smpl_faces[:, 2]]
    ) / 3.0
    smpl_tetras = (np.loadtxt(os.path.join(folder, "tetrahedrons.txt"), dtype=np.int32) - 1)

    return_dict = {
        "smpl_vertex_code": torch.tensor(smpl_vertex_code),
        "smpl_face_code": torch.tensor(smpl_face_code),
        "smpl_faces": torch.tensor(smpl_faces),
        "smpl_tetras": torch.tensor(smpl_tetras)
    }

    return return_dict


def get_visibility(xy, z, faces, img_res=2**12, blur_radius=0.0, faces_per_pixel=1):
    """get the visibility of vertices

    Args:
        xy (torch.tensor): [B, N,2]
        z (torch.tensor): [B, N,1]
        faces (torch.tensor): [B, N,3]
        size (int): resolution of rendered image
    """

    if xy.ndimension() == 2:
        xy = xy.unsqueeze(0)
        z = z.unsqueeze(0)
        faces = faces.unsqueeze(0)

    xyz = (torch.cat((xy, -z), dim=-1) + 1.) / 2.
    N_body = xyz.shape[0]
    faces = faces.long().repeat(N_body, 1, 1)
    vis_mask = torch.zeros(size=(N_body, z.shape[1]))
    rasterizer = Pytorch3dRasterizer(image_size=img_res)

    meshes_screen = Meshes(verts=xyz, faces=faces)
    pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
        meshes_screen,
        image_size=rasterizer.raster_settings.image_size,
        blur_radius=blur_radius,
        faces_per_pixel=faces_per_pixel,
        bin_size=rasterizer.raster_settings.bin_size,
        max_faces_per_bin=rasterizer.raster_settings.max_faces_per_bin,
        perspective_correct=rasterizer.raster_settings.perspective_correct,
        cull_backfaces=rasterizer.raster_settings.cull_backfaces,
    )

    pix_to_face = pix_to_face.detach().cpu().view(N_body, -1)
    faces = faces.detach().cpu()

    for idx in range(N_body):
        Num_faces = len(faces[idx])
        vis_vertices_id = torch.unique(
            faces[idx][torch.unique(pix_to_face[idx][pix_to_face[idx] != -1]) - Num_faces * idx, :]
        )
        vis_mask[idx, vis_vertices_id] = 1.0

    # print("------------------------\n")
    # print(f"keep points : {vis_mask.sum()/len(vis_mask)}")

    return vis_mask


def barycentric_coordinates_of_projection(points, vertices):
    """https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py"""
    """Given a point, gives projected coords of that point to a triangle
    in barycentric coordinates.
    See
        **Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05
        at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf
    
    :param p: point to project. [B, 3]
    :param v0: first vertex of triangles. [B, 3]
    :returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v``
            vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN``
    """
    # (p, q, u, v)
    v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2]

    u = v1 - v0
    v = v2 - v0
    n = torch.cross(u, v)
    sb = torch.sum(n * n, dim=1)
    # If the triangle edges are collinear, cross-product is zero,
    # which makes "s" 0, which gives us divide by zero. So we
    # make the arbitrary choice to set s to epsv (=numpy.spacing(1)),
    # the closest thing to zero
    sb[sb == 0] = 1e-6
    oneOver4ASquared = 1.0 / sb
    w = points - v0
    b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared
    b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared
    weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1)
    # check barycenric weights
    # p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3]
    return weights


def orthogonal(points, calibrations, transforms=None):
    """
    Compute the orthogonal projections of 3D points into the image plane by given projection matrix
    :param points: [B, 3, N] Tensor of 3D points
    :param calibrations: [B, 3, 4] Tensor of projection matrix
    :param transforms: [B, 2, 3] Tensor of image transform matrix
    :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane
    """
    rot = calibrations[:, :3, :3]
    trans = calibrations[:, :3, 3:4]
    pts = torch.baddbmm(trans, rot, points)    # [B, 3, N]
    if transforms is not None:
        scale = transforms[:2, :2]
        shift = transforms[:2, 2:3]
        pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :])
    return pts


def projection(points, calib):
    if torch.is_tensor(points):
        calib = torch.as_tensor(calib) if not torch.is_tensor(calib) else calib
        return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3]
    else:
        return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3]


def load_calib(calib_path):
    calib_data = np.loadtxt(calib_path, dtype=float)
    extrinsic = calib_data[:4, :4]
    intrinsic = calib_data[4:8, :4]
    calib_mat = np.matmul(intrinsic, extrinsic)
    calib_mat = torch.from_numpy(calib_mat).float()
    return calib_mat


def normalize_v3(arr):
    """ Normalize a numpy array of 3 component vectors shape=(n,3) """
    lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2)
    eps = 0.00000001
    lens[lens < eps] = eps
    arr[:, 0] /= lens
    arr[:, 1] /= lens
    arr[:, 2] /= lens
    return arr


def compute_normal(vertices, faces):
    # Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal
    vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype)
    # Create an indexed view into the vertex array using the array of three indices for triangles
    tris = vertices[faces]
    # Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle
    face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0])
    # n is now an array of normals per triangle. The length of each normal is dependent the vertices,
    # we need to normalize these, so that our next step weights each normal equally.
    normalize_v3(face_norms)
    # now we have a normalized array of normals, one per triangle, i.e., per triangle normals.
    # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle,
    # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards.
    # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array
    vert_norms[faces[:, 0]] += face_norms
    vert_norms[faces[:, 1]] += face_norms
    vert_norms[faces[:, 2]] += face_norms
    normalize_v3(vert_norms)

    return vert_norms, face_norms


def face_vertices(vertices, faces):
    """
    :param vertices: [batch size, number of vertices, 3]
    :param faces: [batch size, number of faces, 3]
    :return: [batch size, number of faces, 3, 3]
    """

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
    vertices = vertices.reshape((bs * nv, vertices.shape[-1]))

    return vertices[faces.long()]


def compute_normal_batch(vertices, faces):

    if faces.shape[0] != vertices.shape[0]:
        faces = faces.repeat(vertices.shape[0], 1, 1)

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]

    vert_norm = torch.zeros(bs * nv, 3).type_as(vertices)
    tris = face_vertices(vertices, faces)
    face_norm = F.normalize(
        torch.cross(tris[:, :, 1] - tris[:, :, 0], tris[:, :, 2] - tris[:, :, 0]),
        dim=-1,
    )

    faces = (faces + (torch.arange(bs).type_as(faces) * nv)[:, None, None]).view(-1, 3)

    vert_norm[faces[:, 0]] += face_norm.view(-1, 3)
    vert_norm[faces[:, 1]] += face_norm.view(-1, 3)
    vert_norm[faces[:, 2]] += face_norm.view(-1, 3)

    vert_norm = F.normalize(vert_norm, dim=-1).view(bs, nv, 3)

    return vert_norm


def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type="smpl"):

    font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf")
    font = ImageFont.truetype(font_path, 30)
    grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), nrow=nrow, padding=0)
    grid_img = Image.fromarray(
        ((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * 255.0).astype(np.uint8)
    )

    if False:
        # add text
        draw = ImageDraw.Draw(grid_img)
        grid_size = 512
        if loss is not None:
            draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font)

        if type == "smpl":
            for col_id, col_txt in enumerate(
                [
                    "image",
                    "smpl-norm(render)",
                    "cloth-norm(pred)",
                    "diff-norm",
                    "diff-mask",
                ]
            ):
                draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
        elif type == "cloth":
            for col_id, col_txt in enumerate(
                ["image", "cloth-norm(recon)", "cloth-norm(pred)", "diff-norm"]
            ):
                draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
            for col_id, col_txt in enumerate(["0", "90", "180", "270"]):
                draw.text(
                    (10 + (col_id * grid_size), grid_size * 2 + 5),
                    col_txt,
                    (255, 0, 0),
                    font=font,
                )
        else:
            print(f"{type} should be 'smpl' or 'cloth'")

    grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), Image.ANTIALIAS)

    return grid_img


def clean_mesh(verts, faces):

    device = verts.device

    mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), faces.detach().cpu().numpy())
    largest_mesh = keep_largest(mesh_lst)
    final_verts = torch.as_tensor(largest_mesh.vertices).float().to(device)
    final_faces = torch.as_tensor(largest_mesh.faces).long().to(device)

    return final_verts, final_faces


def clean_floats(mesh):
    thres = mesh.vertices.shape[0] * 1e-2
    mesh_lst = mesh.split(only_watertight=False)
    clean_mesh_lst = [mesh for mesh in mesh_lst if mesh.vertices.shape[0] > thres]
    return sum(clean_mesh_lst)


def keep_largest(mesh):
    mesh_lst = mesh.split(only_watertight=False)
    keep_mesh = mesh_lst[0]
    for mesh in mesh_lst:
        if mesh.vertices.shape[0] > keep_mesh.vertices.shape[0]:
            keep_mesh = mesh
    return keep_mesh


def mesh_move(mesh_lst, step, scale=1.0):

    trans = np.array([1.0, 0.0, 0.0]) * step

    resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=trans)

    results = []

    for mesh in mesh_lst:
        mesh.apply_transform(resize_matrix)
        results.append(mesh)

    return results


def rescale_smpl(fitted_path, scale=100, translate=(0, 0, 0)):

    fitted_body = trimesh.load(fitted_path, process=False, maintain_order=True, skip_materials=True)
    resize_matrix = trimesh.transformations.scale_and_translate(scale=(scale), translate=translate)

    fitted_body.apply_transform(resize_matrix)

    return np.array(fitted_body.vertices)


def get_joint_mesh(joints, radius=2.0):

    ball = trimesh.creation.icosphere(radius=radius)
    combined = None
    for joint in joints:
        ball_new = trimesh.Trimesh(vertices=ball.vertices + joint, faces=ball.faces, process=False)
        if combined is None:
            combined = ball_new
        else:
            combined = sum([combined, ball_new])
    return combined