File size: 6,500 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
de4d7c5
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import os

from yacs.config import CfgNode as CN

_C = CN(new_allowed=True)

# needed by trainer
_C.name = "default"
_C.gpus = [0]
_C.test_gpus = [1]
_C.devices = 1
_C.root = "./data/"
_C.ckpt_dir = "./data/ckpt/"
_C.resume_path = ""
_C.normal_path = ""
_C.ifnet_path = ""
_C.results_path = "./results/"
_C.projection_mode = "orthogonal"
_C.num_views = 1
_C.sdf = False
_C.sdf_clip = 5.0

_C.lr_netF = 1e-3
_C.lr_netB = 1e-3
_C.lr_netD = 1e-3
_C.lr_G = 1e-3
_C.weight_decay = 0.0
_C.momentum = 0.0
_C.optim = "RMSprop"
_C.schedule = [5, 10, 15]
_C.gamma = 0.1

_C.overfit = False
_C.resume = False
_C.test_mode = False
_C.test_uv = False
_C.draw_geo_thres = 0.60
_C.num_sanity_val_steps = 2
_C.fast_dev = 0
_C.get_fit = False
_C.agora = False
_C.optim_cloth = False
_C.optim_body = False
_C.mcube_res = 256
_C.clean_mesh = True
_C.remesh = False
_C.body_overlap_thres = 1.0
_C.cloth_overlap_thres = 1.0

_C.batch_size = 4
_C.num_threads = 8

_C.num_epoch = 10
_C.freq_plot = 0.01
_C.freq_show_train = 0.1
_C.freq_show_val = 0.2
_C.freq_eval = 0.5
_C.accu_grad_batch = 4

_C.vol_res = 128

_C.test_items = ["sv", "mv", "mv-fusion", "hybrid", "dc-pred", "gt"]

_C.net = CN()
_C.net.gtype = "HGPIFuNet"
_C.net.ctype = "resnet18"
_C.net.classifierIMF = "MultiSegClassifier"
_C.net.netIMF = "resnet18"
_C.net.norm = "group"
_C.net.norm_mlp = "group"
_C.net.norm_color = "group"
_C.net.hg_down = "ave_pool"
_C.net.num_views = 1

_C.bni = CN()
_C.bni.k = 4
_C.bni.lambda1 = 1e-4
_C.bni.boundary_consist = 1e-6
_C.bni.poisson_depth = 10
_C.bni.use_poisson = True
_C.bni.use_smpl = ["face", "hand"]
_C.bni.use_ifnet = False
_C.bni.finish = False
_C.bni.thickness = 0.00
_C.bni.hand_thres = 4e-2
_C.bni.face_thres = 6e-2
_C.bni.hps_type = "pixie"
_C.bni.texture_src = "image"
_C.bni.cut_intersection = True

# kernel_size, stride, dilation, padding

_C.net.conv1 = [7, 2, 1, 3]
_C.net.conv3x3 = [3, 1, 1, 1]

_C.net.num_stack = 4
_C.net.num_hourglass = 2
_C.net.hourglass_dim = 256
_C.net.voxel_dim = 32
_C.net.resnet_dim = 120
_C.net.mlp_dim = [320, 1024, 512, 256, 128, 1]
_C.net.mlp_dim_knn = [320, 1024, 512, 256, 128, 3]
_C.net.mlp_dim_color = [513, 1024, 512, 256, 128, 3]
_C.net.mlp_dim_multiseg = [1088, 2048, 1024, 500]
_C.net.res_layers = [2, 3, 4]
_C.net.filter_dim = 256
_C.net.smpl_dim = 3

_C.net.cly_dim = 3
_C.net.soft_dim = 64
_C.net.z_size = 200.0
_C.net.N_freqs = 10
_C.net.geo_w = 0.1
_C.net.norm_w = 0.1
_C.net.dc_w = 0.1
_C.net.C_cat_to_G = False

_C.net.skip_hourglass = True
_C.net.use_tanh = True
_C.net.soft_onehot = True
_C.net.no_residual = True
_C.net.use_attention = False

_C.net.prior_type = "icon"
_C.net.smpl_feats = ["sdf", "vis"]
_C.net.use_filter = True
_C.net.use_cc = False
_C.net.use_PE = False
_C.net.use_IGR = False
_C.net.use_gan = False
_C.net.in_geo = ()
_C.net.in_nml = ()
_C.net.front_losses = ()
_C.net.back_losses = ()

_C.net.gan = CN()
_C.net.gan.dim_detail = 64
_C.net.gan.lambda_gan = 1
_C.net.gan.lambda_grad = 10
_C.net.gan.lambda_recon = 10
_C.net.gan.d_reg_every = 16
_C.net.gan.img_res = 512

_C.dataset = CN()
_C.dataset.root = ""
_C.dataset.cached = True
_C.dataset.set_splits = [0.95, 0.04]
_C.dataset.types = [
    "3dpeople",
    "axyz",
    "renderpeople",
    "renderpeople_p27",
    "humanalloy",
]
_C.dataset.scales = [1.0, 100.0, 1.0, 1.0, 100.0 / 39.37]
_C.dataset.rp_type = "pifu900"
_C.dataset.th_type = "train"
_C.dataset.input_size = 512
_C.dataset.rotation_num = 3
_C.dataset.num_precomp = 10    # Number of segmentation classifiers
_C.dataset.num_multiseg = 500    # Number of categories per classifier
_C.dataset.num_knn = 10    # for loss/error
_C.dataset.num_knn_dis = 20    # for accuracy
_C.dataset.num_verts_max = 20000
_C.dataset.zray_type = False
_C.dataset.online_smpl = False
_C.dataset.noise_type = ["z-trans", "pose", "beta"]
_C.dataset.noise_scale = [0.0, 0.0, 0.0]
_C.dataset.num_sample_geo = 10000
_C.dataset.num_sample_color = 0
_C.dataset.num_sample_seg = 0
_C.dataset.num_sample_knn = 10000

_C.dataset.sigma_geo = 5.0
_C.dataset.sigma_color = 0.10
_C.dataset.sigma_seg = 0.10
_C.dataset.thickness_threshold = 20.0
_C.dataset.ray_sample_num = 2
_C.dataset.semantic_p = False
_C.dataset.remove_outlier = False
_C.dataset.laplacian_iters = 0
_C.dataset.prior_type = "smpl"
_C.dataset.voxel_res = 128

_C.dataset.train_bsize = 1.0
_C.dataset.val_bsize = 1.0
_C.dataset.test_bsize = 1.0
_C.dataset.single = True


def get_cfg_defaults():
    """Get a yacs CfgNode object with default values for my_project."""
    # Return a clone so that the defaults will not be altered
    # This is for the "local variable" use pattern
    return _C.clone()


# Alternatively, provide a way to import the defaults as
# a global singleton:
cfg = _C    # users can `from config import cfg`

# cfg = get_cfg_defaults()
# cfg.merge_from_file('./configs/example.yaml')

# # Now override from a list (opts could come from the command line)
# opts = ['dataset.root', './data/XXXX', 'learning_rate', '1e-2']
# cfg.merge_from_list(opts)


def update_cfg(cfg_file):
    # cfg = get_cfg_defaults()
    _C.merge_from_file(cfg_file)
    # return cfg.clone()
    return _C


def parse_args(args):
    cfg_file = args.cfg_file
    if args.cfg_file is not None:
        cfg = update_cfg(args.cfg_file)
    else:
        cfg = get_cfg_defaults()

    # if args.misc is not None:
    #     cfg.merge_from_list(args.misc)

    return cfg


def parse_args_extend(args):
    if args.resume:
        if not os.path.exists(args.log_dir):
            raise ValueError("Experiment are set to resume mode, but log directory does not exist.")

        # load log's cfg
        cfg_file = os.path.join(args.log_dir, "cfg.yaml")
        cfg = update_cfg(cfg_file)

        if args.misc is not None:
            cfg.merge_from_list(args.misc)
    else:
        parse_args(args)