Spaces:
Runtime error
Runtime error
File size: 7,753 Bytes
da48dbe 487ee6d da48dbe 487ee6d da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib.net.BasePIFuNet import BasePIFuNet
from lib.net.FBNet import GANLoss, IDMRFLoss, VGGLoss, define_D, define_G
from lib.net.net_util import init_net
class NormalNet(BasePIFuNet):
"""
HG PIFu network uses Hourglass stacks as the image filter.
It does the following:
1. Compute image feature stacks and store it in self.im_feat_list
self.im_feat_list[-1] is the last stack (output stack)
2. Calculate calibration
3. If training, it index on every intermediate stacks,
If testing, it index on the last stack.
4. Classification.
5. During training, error is calculated on all stacks.
"""
def __init__(self, cfg):
super(NormalNet, self).__init__()
self.opt = cfg.net
self.F_losses = [item[0] for item in self.opt.front_losses]
self.B_losses = [item[0] for item in self.opt.back_losses]
self.F_losses_ratio = [item[1] for item in self.opt.front_losses]
self.B_losses_ratio = [item[1] for item in self.opt.back_losses]
self.ALL_losses = self.F_losses + self.B_losses
if self.training:
if 'vgg' in self.ALL_losses:
self.vgg_loss = VGGLoss()
if ('gan' in self.ALL_losses) or ('gan_feat' in self.ALL_losses):
self.gan_loss = GANLoss(use_lsgan=True)
if 'mrf' in self.ALL_losses:
self.mrf_loss = IDMRFLoss()
if 'l1' in self.ALL_losses:
self.l1_loss = nn.SmoothL1Loss()
self.in_nmlF = [
item[0] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image"
]
self.in_nmlB = [
item[0] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"
]
self.in_nmlF_dim = sum([
item[1] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image"
])
self.in_nmlB_dim = sum([
item[1] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"
])
self.netF = define_G(self.in_nmlF_dim, 3, 64, "global", 4, 9, 1, 3, "instance")
self.netB = define_G(self.in_nmlB_dim, 3, 64, "global", 4, 9, 1, 3, "instance")
if ('gan' in self.ALL_losses):
self.netD = define_D(3, 64, 3, 'instance', False, 2, 'gan_feat' in self.ALL_losses)
init_net(self)
def forward(self, in_tensor):
inF_list = []
inB_list = []
for name in self.in_nmlF:
inF_list.append(in_tensor[name])
for name in self.in_nmlB:
inB_list.append(in_tensor[name])
nmlF = self.netF(torch.cat(inF_list, dim=1))
nmlB = self.netB(torch.cat(inB_list, dim=1))
# ||normal|| == 1
nmlF_normalized = nmlF / torch.norm(nmlF, dim=1, keepdim=True)
nmlB_normalized = nmlB / torch.norm(nmlB, dim=1, keepdim=True)
# output: float_arr [-1,1] with [B, C, H, W]
mask = ((in_tensor["image"].abs().sum(dim=1, keepdim=True) != 0.0).detach().float())
return nmlF_normalized * mask, nmlB_normalized * mask
def get_norm_error(self, prd_F, prd_B, tgt):
"""calculate normal loss
Args:
pred (torch.tensor): [B, 6, 512, 512]
tagt (torch.tensor): [B, 6, 512, 512]
"""
tgt_F, tgt_B = tgt["normal_F"], tgt["normal_B"]
# netF, netB, netD
total_loss = {"netF": 0.0, "netB": 0.0}
if 'l1' in self.F_losses:
l1_F_loss = self.l1_loss(prd_F, tgt_F)
total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('l1')] * l1_F_loss
total_loss["l1_F"] = self.F_losses_ratio[self.F_losses.index('l1')] * l1_F_loss
if 'l1' in self.B_losses:
l1_B_loss = self.l1_loss(prd_B, tgt_B)
total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('l1')] * l1_B_loss
total_loss["l1_B"] = self.B_losses_ratio[self.B_losses.index('l1')] * l1_B_loss
if 'vgg' in self.F_losses:
vgg_F_loss = self.vgg_loss(prd_F, tgt_F)
total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('vgg')] * vgg_F_loss
total_loss["vgg_F"] = self.F_losses_ratio[self.F_losses.index('vgg')] * vgg_F_loss
if 'vgg' in self.B_losses:
vgg_B_loss = self.vgg_loss(prd_B, tgt_B)
total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('vgg')] * vgg_B_loss
total_loss["vgg_B"] = self.B_losses_ratio[self.B_losses.index('vgg')] * vgg_B_loss
scale_factor = 0.5
if 'mrf' in self.F_losses:
mrf_F_loss = self.mrf_loss(
F.interpolate(prd_F, scale_factor=scale_factor, mode='bicubic', align_corners=True),
F.interpolate(tgt_F, scale_factor=scale_factor, mode='bicubic', align_corners=True)
)
total_loss["netF"] += self.F_losses_ratio[self.F_losses.index('mrf')] * mrf_F_loss
total_loss["mrf_F"] = self.F_losses_ratio[self.F_losses.index('mrf')] * mrf_F_loss
if 'mrf' in self.B_losses:
mrf_B_loss = self.mrf_loss(
F.interpolate(prd_B, scale_factor=scale_factor, mode='bicubic', align_corners=True),
F.interpolate(tgt_B, scale_factor=scale_factor, mode='bicubic', align_corners=True)
)
total_loss["netB"] += self.B_losses_ratio[self.B_losses.index('mrf')] * mrf_B_loss
total_loss["mrf_B"] = self.B_losses_ratio[self.B_losses.index('mrf')] * mrf_B_loss
if 'gan' in self.ALL_losses:
total_loss["netD"] = 0.0
pred_fake = self.netD.forward(prd_B)
pred_real = self.netD.forward(tgt_B)
loss_D_fake = self.gan_loss(pred_fake, False)
loss_D_real = self.gan_loss(pred_real, True)
loss_G_fake = self.gan_loss(pred_fake, True)
total_loss["netD"] += 0.5 * (loss_D_fake + loss_D_real
) * self.B_losses_ratio[self.B_losses.index('gan')]
total_loss["D_fake"] = loss_D_fake * self.B_losses_ratio[self.B_losses.index('gan')]
total_loss["D_real"] = loss_D_real * self.B_losses_ratio[self.B_losses.index('gan')]
total_loss["netB"] += loss_G_fake * self.B_losses_ratio[self.B_losses.index('gan')]
total_loss["G_fake"] = loss_G_fake * self.B_losses_ratio[self.B_losses.index('gan')]
if 'gan_feat' in self.ALL_losses:
loss_G_GAN_Feat = 0
for i in range(2):
for j in range(len(pred_fake[i]) - 1):
loss_G_GAN_Feat += self.l1_loss(pred_fake[i][j], pred_real[i][j].detach())
total_loss["netB"] += loss_G_GAN_Feat * self.B_losses_ratio[
self.B_losses.index('gan_feat')]
total_loss["G_GAN_Feat"] = loss_G_GAN_Feat * self.B_losses_ratio[
self.B_losses.index('gan_feat')]
return total_loss
|