Spaces:
Runtime error
Runtime error
File size: 10,835 Bytes
da48dbe c3d3e4a da48dbe 0718695 da48dbe 3577d3c da48dbe c7645de d9b3718 d739994 fed242e da48dbe 66ab6d4 fed242e da48dbe 3577d3c da48dbe 66ab6d4 0718695 1c63d9b c7645de 858167a d739994 da48dbe 66ab6d4 da48dbe 0718695 da48dbe 3577d3c da48dbe c7645de 858167a de4d7c5 da48dbe 858167a da48dbe 66ab6d4 858167a 3577d3c 858167a da48dbe 3577d3c da48dbe ff007ef da48dbe 66ab6d4 da48dbe fed242e da48dbe fed242e 3577d3c da48dbe 858167a 66ab6d4 da48dbe d739994 da48dbe 66ab6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
<!-- PROJECT LOGO -->
<p align="center">
<h1 align="center">ECON: Explicit Clothed humans Obtained from Normals</h1>
<p align="center">
<a href="http://xiuyuliang.cn/"><strong>Yuliang Xiu</strong></a>
路
<a href="https://ps.is.tuebingen.mpg.de/person/jyang"><strong>Jinlong Yang</strong></a>
路
<a href="https://hoshino042.github.io/homepage/"><strong>Xu Cao</strong></a>
路
<a href="https://ps.is.mpg.de/~dtzionas"><strong>Dimitrios Tzionas</strong></a>
路
<a href="https://ps.is.tuebingen.mpg.de/person/black"><strong>Michael J. Black</strong></a>
</p>
<h2 align="center">CVPR 2023 (Highlight)</h2>
<div align="center">
<img src="./assets/teaser.gif" alt="Logo" width="100%">
</div>
<p align="center">
<br>
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a>
<a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a>
<a href="https://cupy.dev/"><img alt="cupy" src="https://img.shields.io/badge/-Cupy-46C02B?logo=numpy&logoColor=white"></a>
<a href="https://twitter.com/yuliangxiu"><img alt='Twitter' src="https://img.shields.io/twitter/follow/yuliangxiu?label=%40yuliangxiu"></a>
<br></br>
<a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing'><img src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a>
<a href='https://github.com/YuliangXiu/ECON/blob/master/docs/installation-docker.md'><img src='https://img.shields.io/badge/Docker-9cf.svg?logo=Docker' alt='Docker'></a>
<a href='https://carlosedubarreto.gumroad.com/l/CEB_ECON'><img src='https://img.shields.io/badge/Blender-F6DDCC.svg?logo=Blender' alt='Blender'></a>
<br></br>
<a href="https://arxiv.org/abs/2212.07422">
<img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=adobeacrobatreader&logoWidth=20&logoColor=white&labelColor=66cc00&color=94DD15' alt='Paper PDF'>
</a>
<a href='https://xiuyuliang.cn/econ/'>
<img src='https://img.shields.io/badge/ECON-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a>
<a href="https://discord.gg/Vqa7KBGRyk"><img src="https://img.shields.io/discord/940240966844035082?color=7289DA&labelColor=4a64bd&logo=discord&logoColor=white&style=for-the-badge"></a>
<a href="https://youtu.be/j5hw4tsWpoY"><img alt="youtube views" title="Subscribe to my YouTube channel" src="https://img.shields.io/youtube/views/j5hw4tsWpoY?logo=youtube&labelColor=ce4630&style=for-the-badge"/></a>
</p>
</p>
<br/>
ECON is designed for "Human digitization from a color image", which combines the best properties of implicit and explicit representations, to infer high-fidelity 3D clothed humans from in-the-wild images, even with **loose clothing** or in **challenging poses**. ECON also supports **multi-person reconstruction** and **SMPL-X based animation**.
<br/>
<br/>
## News :triangular_flag_on_post:
- [2023/02/27] ECON got accepted by CVPR 2023 as Highlight (top 10%)!
- [2023/01/12] [Carlos Barreto](https://twitter.com/carlosedubarret/status/1613252471035494403) creates a Blender Addon ([Download](https://carlosedubarreto.gumroad.com/l/CEB_ECON), [Tutorial](https://youtu.be/sbWZbTf6ZYk)).
- [2023/01/08] [Teddy Huang](https://github.com/Teddy12155555) creates [install-with-docker](docs/installation-docker.md) for ECON .
- [2023/01/06] [Justin John](https://github.com/justinjohn0306) and [Carlos Barreto](https://github.com/carlosedubarreto) creates [install-on-windows](docs/installation-windows.md) for ECON .
- [2022/12/22] <a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing' style='padding-left: 0.5rem;'><img src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a> is now available, created by [Aron Arzoomand](https://github.com/AroArz).
- [2022/12/15] Both <a href="#demo">demo</a> and <a href="https://arxiv.org/abs/2212.07422">arXiv</a> are available.
## TODO
- [ ] Blender add-on for FBX export
- [ ] Full RGB texture generation
## Key idea: d-BiNI
d-BiNI jointly optimizes front-back 2.5D surfaces such that: (1) high-frequency surface details agree with normal maps, (2) low-frequency surface variations, including discontinuities, align with SMPL-X surfaces, and (3) front-back 2.5D surface silhouettes are coherent with each other.
|Front-view|Back-view|Side-view|
|:--:|:--:|:---:|
|![](assets/front-45.gif)|![](assets/back-45.gif)|![](assets/double-90.gif)||
<details><summary>Please consider cite <strong>BiNI</strong> if it also helps on your project</summary>
```bibtex
@inproceedings{cao2022bilateral,
title={Bilateral normal integration},
author={Cao, Xu and Santo, Hiroaki and Shi, Boxin and Okura, Fumio and Matsushita, Yasuyuki},
booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part I},
pages={552--567},
year={2022},
organization={Springer}
}
```
</details>
<br>
<!-- TABLE OF CONTENTS -->
<details open="open" style='padding: 10px; border-radius:5px 30px 30px 5px; border-style: solid; border-width: 1px;'>
<summary>Table of Contents</summary>
<ol>
<li>
<a href="#instructions">Instructions</a>
</li>
<li>
<a href="#demo">Demo</a>
</li>
<li>
<a href="#applications">Applications</a>
</li>
<li>
<a href="#citation">Citation</a>
</li>
</ol>
</details>
<br/>
## Instructions
- See [installion doc for Docker](docs/installation-docker.md) to run a docker container with pre-built image for ECON demo
- See [installion doc for Windows](docs/installation-windows.md) to install all the required packages and setup the models on _Windows_
- See [installion doc for Ubuntu](docs/installation-ubuntu.md) to install all the required packages and setup the models on _Ubuntu_
- See [magic tricks](docs/tricks.md) to know a few technical tricks to further improve and accelerate ECON
- See [testing](docs/testing.md) to prepare the testing data and evaluate ECON
## Demo
```bash
# For single-person image-based reconstruction (w/ l visualization steps, 1.8min)
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results
# For multi-person image-based reconstruction (see config/econ.yaml)
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi
# To generate the demo video of reconstruction results
python -m apps.multi_render -n <filename>
# To animate the reconstruction with SMPL-X pose parameters
python -m apps.avatarizer -n <filename>
```
<br/>
## More Qualitative Results
| ![OOD Poses](assets/OOD-poses.jpg) |
| :------------------------------------: |
| _Challenging Poses_ |
| ![OOD Clothes](assets/OOD-outfits.jpg) |
| _Loose Clothes_ |
## Applications
| ![SHHQ](assets/SHHQ.gif) | ![crowd](assets/crowd.gif) |
| :----------------------------------------------------------------------------------------------------: | :-----------------------------------------: |
| _ECON could provide pseudo 3D GT for [SHHQ Dataset](https://github.com/stylegan-human/StyleGAN-Human)_ | _ECON supports multi-person reconstruction_ |
<br/>
<br/>
## Citation
```bibtex
@inproceedings{xiu2023econ,
title = {{ECON: Explicit Clothed humans Obtained from Normals}},
author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
}
```
<br/>
## Acknowledgments
We thank [Lea Hering](https://is.mpg.de/person/lhering) and [Radek Dan臎膷ek](https://is.mpg.de/person/rdanecek) for proof reading, [Yao Feng](https://ps.is.mpg.de/person/yfeng), [Haven Feng](https://is.mpg.de/person/hfeng), and [Weiyang Liu](https://wyliu.com/) for their feedback and discussions, [Tsvetelina Alexiadis](https://ps.is.mpg.de/person/talexiadis) for her help with the AMT perceptual study.
Here are some great resources we benefit from:
- [ICON](https://github.com/YuliangXiu/ICON) for SMPL-X Body Fitting
- [BiNI](https://github.com/hoshino042/bilateral_normal_integration) for Bilateral Normal Integration
- [MonoPortDataset](https://github.com/Project-Splinter/MonoPortDataset) for Data Processing, [MonoPort](https://github.com/Project-Splinter/MonoPort) for fast implicit surface query
- [rembg](https://github.com/danielgatis/rembg) for Human Segmentation
- [MediaPipe](https://google.github.io/mediapipe/getting_started/python.html) for full-body landmark estimation
- [PyTorch-NICP](https://github.com/wuhaozhe/pytorch-nicp) for non-rigid registration
- [smplx](https://github.com/vchoutas/smplx), [PyMAF-X](https://www.liuyebin.com/pymaf-x/), [PIXIE](https://github.com/YadiraF/PIXIE) for Human Pose & Shape Estimation
- [CAPE](https://github.com/qianlim/CAPE) and [THuman](https://github.com/ZhengZerong/DeepHuman/tree/master/THUmanDataset) for Dataset
- [PyTorch3D](https://github.com/facebookresearch/pytorch3d) for Differential Rendering
Some images used in the qualitative examples come from [pinterest.com](https://www.pinterest.com/).
This project has received funding from the European Union鈥檚 Horizon 2020 research and innovation programme under the Marie Sk艂odowska-Curie grant agreement No.860768 ([CLIPE Project](https://www.clipe-itn.eu)).
## Contributors
Kudos to all of our amazing contributors! ECON thrives through open-source. In that spirit, we welcome all kinds of contributions from the community.
<a href="https://github.com/yuliangxiu/ECON/graphs/contributors">
<img src="https://contrib.rocks/image?repo=yuliangxiu/ECON" />
</a>
_Contributor avatars are randomly shuffled._
---
<br>
## License
This code and model are available for non-commercial scientific research purposes as defined in the [LICENSE](LICENSE) file. By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE).
## Disclosure
MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH. While MJB is a part-time employee of Meshcapade, his research was performed solely at, and funded solely by, the Max Planck Society.
## Contact
For technical questions, please contact yuliang.xiu@tue.mpg.de
For commercial licensing, please contact ps-licensing@tue.mpg.de
|