Spaces:
Running
Running
File size: 7,966 Bytes
684d21d a19f837 684d21d a19f837 f23524f a19f837 cd450eb a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 c26cdc1 a19f837 22e1363 a19f837 11fb468 a19f837 11fb468 a19f837 22e1363 75a0ea0 a4a22d3 1c34365 a4a22d3 1c34365 a4a22d3 22e1363 a4a22d3 632c414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, PlainTextResponse
import sentencepiece as spm
import re
import math
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
app = FastAPI()
from fastapi.middleware.cors import CORSMiddleware
origins = [
"https://insect5386.github.io",
"https://insect5386.github.io/insect5386"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# SentencePiece ๋ก๋ (ํ ํฌ๋์ด์ ๋ ํน์ ํ ํฐ ID๋ ๋์ผํ๊ฒ ์ธํ
)
sp = spm.SentencePieceProcessor()
sp.load("ko_unigram4.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("< end >")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
self.dim = dim
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
# x shape: (batch, heads, seq_len, depth)
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32) # (seq_len,)
freqs = tf.einsum('i,j->ij', t, self.inv_freq) # (seq_len, dim//2)
emb_sin = tf.sin(freqs) # (seq_len, dim//2)
emb_cos = tf.cos(freqs) # (seq_len, dim//2)
# (seq_len, dim//2) -> (1, 1, seq_len, dim//2) to broadcast with x
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2] # (batch, heads, seq_len, depth//2)
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1) # shape (batch, heads, seq_len, depth//2, 2)
x_rotated = tf.reshape(x_rotated, tf.shape(x)) # ๋ค์ (batch, heads, seq_len, depth)
return x_rotated
class GEGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = layers.Dense(d_ff * 2)
self.out = layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.gelu(x_gate))
class KeraLuxBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=20, dropout_rate=0.1):
super().__init__()
self.ln1 = layers.LayerNormalization(epsilon=1e-5)
self.mha = layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = layers.Dropout(dropout_rate)
self.ln2 = layers.LayerNormalization(epsilon=1e-5)
self.ffn = GEGLU(d_model, d_ff)
self.dropout2 = layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
# MHA ์ฟผ๋ฆฌ, ํค์ RoPE ์ ์ฉ
batch_size = tf.shape(x_norm)[0]
seq_len = tf.shape(x_norm)[1]
num_heads = self.mha.num_heads
depth = (x_norm.shape[-1]) // num_heads
# (batch, seq_len, d_model) -> (batch, num_heads, seq_len, depth)
qkv = tf.reshape(x_norm, [batch_size, seq_len, num_heads, depth])
qkv = tf.transpose(qkv, [0, 2, 1, 3]) # (batch, heads, seq_len, depth)
# RoPE ์ ์ฉ (query, key ๋ชจ๋ ๋์ผ x_norm ์ฌ์ฉํ๋ ๋ ๋ค ์ ์ฉ)
q = self.rope(qkv)
k = self.rope(qkv)
# ๋ค์ ์๋ shape๋ก
q = tf.transpose(q, [0, 2, 1, 3])
q = tf.reshape(q, [batch_size, seq_len, num_heads * depth])
k = tf.transpose(k, [0, 2, 1, 3])
k = tf.reshape(k, [batch_size, seq_len, num_heads * depth])
# MHA ํธ์ถ: query=k=v=x_norm, ํ์ง๋ง RoPE ์์ด q,k๋ก ๋์ฒด
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
x = x + self.dropout1(attn_out, training=training)
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class KeraLux(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=20, dropout_rate=0.1):
super().__init__()
self.token_embedding = layers.Embedding(vocab_size, d_model)
# pos_embedding ์ ๊ฑฐ
self.blocks = [KeraLuxBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
seq_len = tf.shape(x)[1]
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
# ๋ชจ๋ธ ์์ฑ & ๊ฐ์ค์น ๋ถ๋ฌ์ค๊ธฐ
model = KeraLux(vocab_size=vocab_size, seq_len=max_len, d_model=160, d_ff=616, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # ๋ฐฐ์น1, ์ํ์ค๊ธธ์ด max_len
_ = model(dummy_input) # ๋ชจ๋ธ์ด ๋น๋๋จ
model.load_weights("KeraLux3.weights.h5")
print("๋ชจ๋ธ ๊ฐ์ค์น ๋ก๋ ์๋ฃ!")
def decode_sp_tokens(tokens):
text = ''.join(tokens).replace('โ', ' ').strip()
return text
def generate_text_topp(model, prompt, max_len=100, max_gen=98, p=0.9, temperature=0.8, min_len=20):
model_input = text_to_ids(f"<start> {prompt}")
model_input = model_input[:max_len]
generated = list(model_input)
text_so_far = []
for step in range(max_gen):
pad_length = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_length), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_token_logits = logits[0, len(generated) - 1].numpy()
if len(generated) >= min_len:
next_token_logits[end_id] -= 5.0
next_token_logits[pad_id] -= 10.0
logits_temp = next_token_logits / temperature
probs = tf.nn.softmax(logits_temp).numpy()
sorted_idx = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_idx]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cumulative_probs, p, side='right') + 1
filtered_indices = sorted_idx[:cutoff]
filtered_probs = sorted_probs[:cutoff]
filtered_probs /= filtered_probs.sum()
next_token_id = np.random.choice(filtered_indices, p=filtered_probs)
generated.append(int(next_token_id))
next_word = sp.id_to_piece(int(next_token_id))
text_so_far.append(next_word)
decoded_text = decode_sp_tokens(text_so_far)
if len(generated) >= min_len and next_token_id == end_id:
break
if len(generated) >= min_len and decoded_text.endswith(('.', '!', '?')):
break
return decoded_text
def respond(input_text):
if "์ด๋ฆ" in input_text:
return "์ ์ด๋ฆ์ KeraLux์
๋๋ค."
if "๋๊ตฌ" in input_text:
return "์ ๋ KeraLux๋ผ๊ณ ํด์."
return generate_text_topp(model, input_text)
@app.get("/generate", response_class=PlainTextResponse)
async def generate(request: Request):
prompt = request.query_params.get("prompt", "์๋
ํ์ธ์")
response_text = respond(prompt)
return response_text |