Spaces:
Running
on
T4
Running
on
T4
File size: 16,186 Bytes
7b127f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import multiprocessing
import networkx as nx
import numpy as np
import argparse
import os
import trimesh
from tqdm import tqdm
import ray
from check_valid import check_step_valid_soild, load_data_with_prefix
from eval_brepgen import normalize_pc
def real2bit(data, n_bits=8, min_range=-1, max_range=1):
"""Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1]."""
range_quantize = 2 ** n_bits - 1
data_quantize = (data - min_range) * range_quantize / (max_range - min_range)
data_quantize = np.clip(data_quantize, a_min=0, a_max=range_quantize) # clip values
return data_quantize.astype(int)
def build_graph(faces, faces_adj, n_bit=4):
# faces1 and faces2 are np.array of shape (n_faces, n_points, n_points, 3)
# faces_adj1 and faces_adj2 are lists of (face_idx, face_idx) adjacency, ex. [[0, 1], [1, 2]]
if n_bit < 0:
faces_bits = faces
else:
faces_bits = real2bit(faces, n_bits=n_bit)
"""Build a graph from a shape."""
G = nx.Graph()
for face_idx, face_bit in enumerate(faces_bits):
G.add_node(face_idx, shape_geometry=face_bit)
for pair in faces_adj:
G.add_edge(pair[0], pair[1])
return G
def is_graph_identical(graph1, graph2, atol=None):
"""Check if two shapes are identical."""
# Check if the two graphs are isomorphic considering node attributes
if atol is None:
return nx.is_isomorphic(
graph1, graph2,
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry'])
)
else:
return nx.is_isomorphic(
graph1, graph2,
node_match=lambda n1, n2: np.allclose(n1['shape_geometry'], n2['shape_geometry'], atol=atol, rtol=0)
)
def is_graph_identical_batch(graph_pair_list, atol=None):
is_identical_list = []
for graph1, graph2 in graph_pair_list:
is_identical = is_graph_identical(graph1, graph2, atol=atol)
is_identical_list.append(is_identical)
return is_identical_list
is_graph_identical_remote = ray.remote(is_graph_identical_batch)
def find_connected_components(matrix):
N = len(matrix)
visited = [False] * N
components = []
def dfs(idx, component):
stack = [idx]
while stack:
node = stack.pop()
if not visited[node]:
visited[node] = True
component.append(node)
for neighbor in range(N):
if matrix[node][neighbor] and not visited[neighbor]:
stack.append(neighbor)
for i in range(N):
if not visited[i]:
component = []
dfs(i, component)
components.append(component)
return components
def compute_gen_unique(graph_list, is_use_ray=False, batch_size=100000, atol=None):
N = len(graph_list)
unique_graph_idx = list(range(N))
pair_0, pair_1 = np.triu_indices(N, k=1)
check_pairs = list(zip(pair_0, pair_1))
deduplicate_matrix = np.zeros((N, N), dtype=bool)
if not is_use_ray:
for idx1, idx2 in tqdm(check_pairs):
is_identical = is_graph_identical(graph_list[idx1], graph_list[idx2], atol=atol)
if is_identical:
unique_graph_idx.remove(idx2) if idx2 in unique_graph_idx else None
deduplicate_matrix[idx1, idx2] = True
deduplicate_matrix[idx2, idx1] = True
else:
ray.init()
N_batch = len(check_pairs) // batch_size
futures = []
for i in tqdm(range(N_batch)):
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
batch_graph_pair = [(graph_list[idx1], graph_list[idx2]) for idx1, idx2 in batch_pairs]
futures.append(is_graph_identical_remote.remote(batch_graph_pair, atol))
results = ray.get(futures)
for batch_idx in tqdm(range(N_batch)):
for idx, is_identical in enumerate(results[batch_idx]):
if not is_identical:
continue
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
deduplicate_matrix[idx1, idx2] = True
deduplicate_matrix[idx2, idx1] = True
if idx2 in unique_graph_idx:
unique_graph_idx.remove(idx2)
ray.shutdown()
unique = len(unique_graph_idx)
print(f"Unique: {unique}/{N}")
unique_ratio = unique / N
return unique_ratio, deduplicate_matrix
def compute_gen_novel_bk(gen_graph_list, train_graph_list, is_use_ray=False, batch_size=100000):
M, N = len(gen_graph_list), len(train_graph_list)
deduplicate_matrix = np.zeros((M, N), dtype=bool)
pair_0, pair_1 = np.triu_indices_from(deduplicate_matrix, k=1)
check_pairs = list(zip(pair_0, pair_1))
non_novel_graph_idx = np.zeros(M, dtype=bool)
if not is_use_ray:
for idx1, idx2 in tqdm(check_pairs):
if non_novel_graph_idx[idx1]:
continue
is_identical = is_graph_identical(gen_graph_list[idx1], train_graph_list[idx2])
if is_identical:
non_novel_graph_idx[idx1] = True
deduplicate_matrix[idx1, idx2] = True
else:
ray.init()
N_batch = len(check_pairs) // batch_size
futures = []
for i in tqdm(range(N_batch)):
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
batch_graph_pair = [(gen_graph_list[idx1], train_graph_list[idx2]) for idx1, idx2 in batch_pairs]
futures.append(is_graph_identical_remote.remote(batch_graph_pair))
results = ray.get(futures)
for batch_idx in tqdm(range(N_batch)):
for idx, is_identical in enumerate(results[batch_idx]):
if not is_identical:
continue
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
deduplicate_matrix[idx1, idx2] = True
non_novel_graph_idx[idx1] = True
ray.shutdown()
novel = M - np.sum(non_novel_graph_idx)
print(f"Novel: {novel}/{M}")
novel_ratio = novel / M
return novel_ratio, deduplicate_matrix
def is_graph_identical_list(graph1, graph2_path_list):
"""Check if two shapes are identical."""
# Check if the two graphs are isomorphic considering node attributes
graph2_list, graph2_prefix_list = load_and_build_graph(graph2_path_list)
for graph2 in graph2_list:
if nx.is_isomorphic(graph1, graph2,
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry'])):
return True
return False
is_graph_identical_list_remote = ray.remote(is_graph_identical_list)
def test_check():
sample = np.random.rand(3, 32, 32, 3)
face1 = sample[[0, 1, 2]]
face2 = sample[[0, 2, 1]]
faces_adj1 = [[0, 1]]
faces_adj2 = [[0, 2]]
graph1 = build_graph(face1, faces_adj1)
graph2 = build_graph(face2, faces_adj2)
is_identical = is_graph_identical(graph1, graph2)
# 判断图是否相等
print("Graphs are equal" if is_identical else "Graphs are not equal")
def load_data_from_npz(data_npz_file):
data_npz = np.load(data_npz_file, allow_pickle=True)
data_npz1 = np.load(data_npz_file.replace("deepcad_32", "deepcad_train_v6"), allow_pickle=True)
# Brepgen
if 'face_edge_adj' in data_npz:
faces = data_npz['pred_face']
face_edge_adj = data_npz['face_edge_adj']
faces_adj_pair = []
N = face_edge_adj.shape[0]
for face_idx1 in range(N):
for face_idx2 in range(face_idx1 + 1, N):
face_edges1 = face_edge_adj[face_idx1]
face_edges2 = face_edge_adj[face_idx2]
if sorted((face_idx1, face_idx2)) in faces_adj_pair:
continue
if len(set(face_edges1).intersection(set(face_edges2))) > 0:
faces_adj_pair.append(sorted((face_idx1, face_idx2)))
return faces, faces_adj_pair
# Ours
if 'sample_points_faces' in data_npz:
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3)
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2))
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz:
face_points = data_npz['pred_face']
edge_face_connectivity = data_npz['pred_edge_face_connectivity']
else:
raise ValueError("Invalid data format")
faces_adj_pair = []
for edge_idx, face_idx1, face_idx2 in edge_face_connectivity:
faces_adj_pair.append([face_idx1, face_idx2])
if face_points.shape[-1] != 3:
face_points = face_points[..., :3]
src_shape = face_points.shape
face_points = normalize_pc(face_points.reshape(-1, 3)).reshape(src_shape)
return face_points, faces_adj_pair
def load_and_build_graph(data_npz_file_list, gen_post_data_root=None, n_bit=4):
gen_graph_list = []
prefix_list = []
for data_npz_file in data_npz_file_list:
folder_name = os.path.basename(os.path.dirname(data_npz_file))
if gen_post_data_root:
step_file_list = load_data_with_prefix(os.path.join(gen_post_data_root, folder_name), ".step")
if len(step_file_list) == 0:
continue
if not check_step_valid_soild(step_file_list[0]):
continue
prefix_list.append(folder_name)
faces, faces_adj_pair = load_data_from_npz(data_npz_file)
graph = build_graph(faces, faces_adj_pair, n_bit)
gen_graph_list.append(graph)
return gen_graph_list, prefix_list
load_and_build_graph_remote = ray.remote(load_and_build_graph)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--fake_root", type=str, required=True)
parser.add_argument("--fake_post", type=str, required=True)
parser.add_argument("--train_root", type=str, required=False)
parser.add_argument("--n_bit", type=int, required=False)
parser.add_argument("--atol", type=float, required=False)
parser.add_argument("--use_ray", action='store_true')
parser.add_argument("--load_batch_size", type=int, default=400)
parser.add_argument("--compute_batch_size", type=int, default=200000)
parser.add_argument("--txt", type=str, default=None)
parser.add_argument("--num_cpus", type=int, default=32)
parser.add_argument("--min_face", type=int, required=False)
parser.add_argument("--only_unique", action='store_true')
args = parser.parse_args()
gen_data_root = args.fake_root
gen_post_data_root = args.fake_post
train_data_root = args.train_root
is_use_ray = args.use_ray
n_bit = args.n_bit
atol = args.atol
load_batch_size = args.load_batch_size
compute_batch_size = args.compute_batch_size
folder_list_txt = args.txt
num_cpus = args.num_cpus
if not n_bit and not atol:
raise ValueError("Must set either n_bit or atol")
if n_bit and atol:
raise ValueError("Cannot set both n_bit and atol")
if not args.only_unique and not train_data_root:
raise ValueError("Must set train_data_root when not only_unique")
if n_bit:
atol = None
if atol:
n_bit = -1
################################################## Unqiue #######################################################
# Load all the generated data files
print("Loading generated data files...")
gen_data_npz_file_list = load_data_with_prefix(gen_data_root, 'data.npz')
if is_use_ray:
ray.init()
futures = []
gen_graph_list = []
gen_prefix_list = []
for i in tqdm(range(0, len(gen_data_npz_file_list), load_batch_size)):
batch_gen_data_npz_file_list = gen_data_npz_file_list[i: i + load_batch_size]
futures.append(load_and_build_graph_remote.remote(batch_gen_data_npz_file_list, gen_post_data_root, n_bit))
for future in tqdm(futures):
result = ray.get(future)
gen_graph_list_batch, gen_prefix_list_batch = result
gen_graph_list.extend(gen_graph_list_batch)
gen_prefix_list.extend(gen_prefix_list_batch)
ray.shutdown()
else:
gen_graph_list, gen_prefix_list = load_and_build_graph(gen_data_npz_file_list, gen_post_data_root, n_bit)
print(f"Loaded {len(gen_graph_list)} generated data files")
if args.min_face:
graph_node_num = [len(graph.nodes) for graph in gen_graph_list]
gen_graph_list = [gen_graph_list[idx] for idx, num in enumerate(graph_node_num) if num >= args.min_face]
gen_prefix_list = [gen_prefix_list[idx] for idx, num in enumerate(graph_node_num) if num >= args.min_face]
print(f"Filtered sample that face_num < {args.min_face}, remain {len(gen_graph_list)}")
print("Computing Unique ratio...")
unique_ratio, deduplicate_matrix = compute_gen_unique(gen_graph_list, is_use_ray, compute_batch_size, atol=atol)
print(f"Unique ratio: {unique_ratio}")
if n_bit == -1:
unique_txt = gen_data_root + f"_unique_atol_{atol}_results.txt"
else:
unique_txt = gen_data_root + f"_unique_{n_bit}bit_results.txt"
fp = open(unique_txt, "w")
print(f"Unique ratio: {unique_ratio}", file=fp)
deduplicate_components = find_connected_components(deduplicate_matrix)
for component in deduplicate_components:
if len(component) > 1:
component = [gen_prefix_list[idx] for idx in component]
print(f"Component: {component}", file=fp)
print(f"Deduplicate components are saved to {unique_txt}")
fp.close()
if args.only_unique:
exit(0)
# For accelerate, please first run the find_nerest.py to find the nearest item in train data for each fake sample
################################################### Novel ########################################################
print("Computing Novel ratio...")
print("Loading training data files...")
# data_npz_file_list = load_data_with_prefix(train_data_root, 'data.npz', folder_list_txt=folder_list_txt)
# load_batch_size = load_batch_size * 5
is_identical = np.zeros(len(gen_graph_list), dtype=bool)
if is_use_ray:
ray.init()
futures = []
for gen_graph_idx, gen_graph in enumerate(tqdm(gen_graph_list)):
nearest_txt = os.path.join(gen_post_data_root, gen_prefix_list[gen_graph_idx], "nearest.txt")
if not os.path.exists(nearest_txt):
continue
with open(nearest_txt, "r+") as f:
lines = f.readlines()
train_folders = [os.path.join(train_data_root, line.strip().split(" ")[0], 'data.npz') for line in lines[2:]]
futures.append(is_graph_identical_list_remote.remote(gen_graph, train_folders))
results = ray.get(futures)
for gen_graph_idx, result in enumerate(results):
is_identical[gen_graph_idx] = result
ray.shutdown()
else:
pbar = tqdm(gen_graph_list)
for gen_graph_idx, gen_graph in enumerate(pbar):
nearest_txt = os.path.join(gen_post_data_root, gen_prefix_list[gen_graph_idx], "nearest.txt")
if not os.path.exists(nearest_txt):
continue
with open(nearest_txt, "r+") as f:
lines = f.readlines()
train_folders = [os.path.join(train_data_root, line.strip().split(" ")[0], 'data.npz') for line in lines[2:]]
is_identical[gen_graph_idx] = is_graph_identical_list(gen_graph, train_folders)
pbar.set_postfix({"novel_count": np.sum(~is_identical)})
identical_folder = np.array(gen_prefix_list)[is_identical]
print(f"Novel ratio: {np.sum(~is_identical) / len(gen_graph_list)}")
novel_txt = gen_data_root + f"_novel_{n_bit}bit_results.txt"
with open(novel_txt, "w") as f:
f.write(f"Novel ratio: {np.sum(~is_identical) / len(gen_graph_list)}\n")
for folder in identical_folder:
f.write(folder + "\n")
print("Done")
if __name__ == "__main__":
main()
|