File size: 11,352 Bytes
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import math

import torch
import torch.nn as nn
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
from torch.nn import functional as F
from torch import Tensor

import utils
from diffusion import diffusion_utils
from models.layers import Xtoy, Etoy, masked_softmax


class XEyTransformerLayer(nn.Module):
    """ Transformer that updates node, edge and global features
        d_x: node features
        d_e: edge features
        dz : global features
        n_head: the number of heads in the multi_head_attention
        dim_feedforward: the dimension of the feedforward network model after self-attention
        dropout: dropout probablility. 0 to disable
        layer_norm_eps: eps value in layer normalizations.
    """
    def __init__(self, dx: int, de: int, dy: int, n_head: int, dim_ffX: int = 2048,
                 dim_ffE: int = 128, dim_ffy: int = 2048, dropout: float = 0.1,
                 layer_norm_eps: float = 1e-5, device=None, dtype=None) -> None:
        kw = {'device': device, 'dtype': dtype}
        super().__init__()

        self.self_attn = NodeEdgeBlock(dx, de, dy, n_head, **kw)

        self.linX1 = Linear(dx, dim_ffX, **kw)
        self.linX2 = Linear(dim_ffX, dx, **kw)
        self.normX1 = LayerNorm(dx, eps=layer_norm_eps, **kw)
        self.normX2 = LayerNorm(dx, eps=layer_norm_eps, **kw)
        self.dropoutX1 = Dropout(dropout)
        self.dropoutX2 = Dropout(dropout)
        self.dropoutX3 = Dropout(dropout)

        self.linE1 = Linear(de, dim_ffE, **kw)
        self.linE2 = Linear(dim_ffE, de, **kw)
        self.normE1 = LayerNorm(de, eps=layer_norm_eps, **kw)
        self.normE2 = LayerNorm(de, eps=layer_norm_eps, **kw)
        self.dropoutE1 = Dropout(dropout)
        self.dropoutE2 = Dropout(dropout)
        self.dropoutE3 = Dropout(dropout)

        self.lin_y1 = Linear(dy, dim_ffy, **kw)
        self.lin_y2 = Linear(dim_ffy, dy, **kw)
        self.norm_y1 = LayerNorm(dy, eps=layer_norm_eps, **kw)
        self.norm_y2 = LayerNorm(dy, eps=layer_norm_eps, **kw)
        self.dropout_y1 = Dropout(dropout)
        self.dropout_y2 = Dropout(dropout)
        self.dropout_y3 = Dropout(dropout)

        self.activation = F.relu

    def forward(self, X: Tensor, E: Tensor, y, node_mask: Tensor):
        """ Pass the input through the encoder layer.
            X: (bs, n, d)
            E: (bs, n, n, d)
            y: (bs, dy)
            node_mask: (bs, n) Mask for the src keys per batch (optional)
            Output: newX, newE, new_y with the same shape.
        """

        newX, newE, new_y = self.self_attn(X, E, y, node_mask=node_mask)

        newX_d = self.dropoutX1(newX)
        X = self.normX1(X + newX_d)

        newE_d = self.dropoutE1(newE)
        E = self.normE1(E + newE_d)

        new_y_d = self.dropout_y1(new_y)
        y = self.norm_y1(y + new_y_d)

        ff_outputX = self.linX2(self.dropoutX2(self.activation(self.linX1(X))))
        ff_outputX = self.dropoutX3(ff_outputX)
        X = self.normX2(X + ff_outputX)

        ff_outputE = self.linE2(self.dropoutE2(self.activation(self.linE1(E))))
        ff_outputE = self.dropoutE3(ff_outputE)
        E = self.normE2(E + ff_outputE)

        ff_output_y = self.lin_y2(self.dropout_y2(self.activation(self.lin_y1(y))))
        ff_output_y = self.dropout_y3(ff_output_y)
        y = self.norm_y2(y + ff_output_y)

        return X, E, y


class NodeEdgeBlock(nn.Module):
    """ Self attention layer that also updates the representations on the edges. """
    def __init__(self, dx, de, dy, n_head, **kwargs):
        super().__init__()
        assert dx % n_head == 0, f"dx: {dx} -- nhead: {n_head}"
        self.dx = dx
        self.de = de
        self.dy = dy
        self.df = int(dx / n_head)
        self.n_head = n_head

        # Attention
        self.q = Linear(dx, dx)
        self.k = Linear(dx, dx)
        self.v = Linear(dx, dx)

        # FiLM E to X
        self.e_add = Linear(de, dx)
        self.e_mul = Linear(de, dx)

        # FiLM y to E
        self.y_e_mul = Linear(dy, dx)           # Warning: here it's dx and not de
        self.y_e_add = Linear(dy, dx)

        # FiLM y to X
        self.y_x_mul = Linear(dy, dx)
        self.y_x_add = Linear(dy, dx)

        # Process y
        self.y_y = Linear(dy, dy)
        self.x_y = Xtoy(dx, dy)
        self.e_y = Etoy(de, dy)

        # Output layers
        self.x_out = Linear(dx, dx)
        self.e_out = Linear(dx, de)
        self.y_out = nn.Sequential(nn.Linear(dy, dy), nn.ReLU(), nn.Linear(dy, dy))

    def forward(self, X, E, y, node_mask):
        """
        :param X: bs, n, d        node features
        :param E: bs, n, n, d     edge features
        :param y: bs, dz           global features
        :param node_mask: bs, n
        :return: newX, newE, new_y with the same shape.
        """
        bs, n, _ = X.shape
        x_mask = node_mask.unsqueeze(-1)        # bs, n, 1
        e_mask1 = x_mask.unsqueeze(2)           # bs, n, 1, 1
        e_mask2 = x_mask.unsqueeze(1)           # bs, 1, n, 1

        # 1. Map X to keys and queries
        Q = self.q(X) * x_mask           # (bs, n, dx)
        K = self.k(X) * x_mask           # (bs, n, dx)
        diffusion_utils.assert_correctly_masked(Q, x_mask)
        # 2. Reshape to (bs, n, n_head, df) with dx = n_head * df

        Q = Q.reshape((Q.size(0), Q.size(1), self.n_head, self.df))
        K = K.reshape((K.size(0), K.size(1), self.n_head, self.df))

        Q = Q.unsqueeze(2)                              # (bs, 1, n, n_head, df)
        K = K.unsqueeze(1)                              # (bs, n, 1, n head, df)

        # Compute unnormalized attentions. Y is (bs, n, n, n_head, df)
        Y = Q * K
        Y = Y / math.sqrt(Y.size(-1))
        diffusion_utils.assert_correctly_masked(Y, (e_mask1 * e_mask2).unsqueeze(-1))

        E1 = self.e_mul(E) * e_mask1 * e_mask2                        # bs, n, n, dx
        E1 = E1.reshape((E.size(0), E.size(1), E.size(2), self.n_head, self.df))

        E2 = self.e_add(E) * e_mask1 * e_mask2                        # bs, n, n, dx
        E2 = E2.reshape((E.size(0), E.size(1), E.size(2), self.n_head, self.df))

        # Incorporate edge features to the self attention scores.
        Y = Y * (E1 + 1) + E2                  # (bs, n, n, n_head, df)

        # Incorporate y to E
        newE = Y.flatten(start_dim=3)                      # bs, n, n, dx
        ye1 = self.y_e_add(y).unsqueeze(1).unsqueeze(1)  # bs, 1, 1, de
        ye2 = self.y_e_mul(y).unsqueeze(1).unsqueeze(1)
        newE = ye1 + (ye2 + 1) * newE

        # Output E
        newE = self.e_out(newE) * e_mask1 * e_mask2      # bs, n, n, de
        diffusion_utils.assert_correctly_masked(newE, e_mask1 * e_mask2)

        # Compute attentions. attn is still (bs, n, n, n_head, df)
        softmax_mask = e_mask2.expand(-1, n, -1, self.n_head)    # bs, 1, n, 1
        attn = masked_softmax(Y, softmax_mask, dim=2)  # bs, n, n, n_head

        V = self.v(X) * x_mask                        # bs, n, dx
        V = V.reshape((V.size(0), V.size(1), self.n_head, self.df))
        V = V.unsqueeze(1)                                     # (bs, 1, n, n_head, df)

        # Compute weighted values
        weighted_V = attn * V
        weighted_V = weighted_V.sum(dim=2)

        # Send output to input dim
        weighted_V = weighted_V.flatten(start_dim=2)            # bs, n, dx

        # Incorporate y to X
        yx1 = self.y_x_add(y).unsqueeze(1)
        yx2 = self.y_x_mul(y).unsqueeze(1)
        newX = yx1 + (yx2 + 1) * weighted_V

        # Output X
        newX = self.x_out(newX) * x_mask
        diffusion_utils.assert_correctly_masked(newX, x_mask)

        # Process y based on X axnd E
        y = self.y_y(y)
        e_y = self.e_y(E)
        x_y = self.x_y(X)
        new_y = y + x_y + e_y
        new_y = self.y_out(new_y)               # bs, dy

        return newX, newE, new_y


class GraphTransformer(nn.Module):
    """
    n_layers : int -- number of layers
    dims : dict -- contains dimensions for each feature type
    """
    def __init__(self, n_layers: int, input_dims: dict, cond_dims: int, hidden_mlp_dims: dict, hidden_dims: dict,
                 output_dims: dict, act_fn_in: nn.ReLU(), act_fn_out: nn.ReLU()):
        super().__init__()
        self.n_layers = n_layers
        self.out_dim_X = output_dims['X']
        self.out_dim_E = output_dims['E']
        self.out_dim_y = output_dims['y']

        self.mlp_in_X = nn.Sequential(nn.Linear(input_dims['X'] + cond_dims, hidden_mlp_dims['X']), act_fn_in,
                                      nn.Linear(hidden_mlp_dims['X'], hidden_dims['dx']), act_fn_in)

        self.mlp_in_E = nn.Sequential(nn.Linear(input_dims['E'] + cond_dims, hidden_mlp_dims['E']), act_fn_in,
                                      nn.Linear(hidden_mlp_dims['E'], hidden_dims['de']), act_fn_in)

        self.mlp_in_y = nn.Sequential(nn.Linear(input_dims['y'], hidden_mlp_dims['y']), act_fn_in,
                                      nn.Linear(hidden_mlp_dims['y'], hidden_dims['dy']), act_fn_in)

        self.tf_layers = nn.ModuleList([XEyTransformerLayer(dx=hidden_dims['dx'],
                                                            de=hidden_dims['de'],
                                                            dy=hidden_dims['dy'],
                                                            n_head=hidden_dims['n_head'],
                                                            dim_ffX=hidden_dims['dim_ffX'],
                                                            dim_ffE=hidden_dims['dim_ffE'])
                                        for i in range(n_layers)])

        self.mlp_out_X = nn.Sequential(nn.Linear(hidden_dims['dx'], hidden_mlp_dims['X']), act_fn_out,
                                       nn.Linear(hidden_mlp_dims['X'], output_dims['X']))

        self.mlp_out_E = nn.Sequential(nn.Linear(hidden_dims['de'], hidden_mlp_dims['E']), act_fn_out,
                                       nn.Linear(hidden_mlp_dims['E'], output_dims['E']))

        self.mlp_out_y = nn.Sequential(nn.Linear(hidden_dims['dy'], hidden_mlp_dims['y']), act_fn_out,
                                       nn.Linear(hidden_mlp_dims['y'], output_dims['y']))

    def forward(self, X, E, y, node_mask):
        bs, n = X.shape[0], X.shape[1]

        diag_mask = torch.eye(n)
        diag_mask = ~diag_mask.type_as(E).bool()
        diag_mask = diag_mask.unsqueeze(0).unsqueeze(-1).expand(bs, -1, -1, -1)

        X_to_out = X[..., :self.out_dim_X]
        E_to_out = E[..., :self.out_dim_E]
        y_to_out = y[..., :self.out_dim_y]

        new_E = self.mlp_in_E(E)
        new_E = (new_E + new_E.transpose(1, 2)) / 2
        
        after_in = utils.PlaceHolder(X=self.mlp_in_X(X), E=new_E, y=self.mlp_in_y(y)).mask(node_mask)
        X, E, y = after_in.X, after_in.E, after_in.y

        for layer in self.tf_layers:
            X, E, y = layer(X, E, y, node_mask)

        X = self.mlp_out_X(X)
        E = self.mlp_out_E(E)
        y = self.mlp_out_y(y)

        X = (X + X_to_out)
        E = (E + E_to_out) * diag_mask
        y = y + y_to_out

        E = 1/2 * (E + torch.transpose(E, 1, 2))

        return utils.PlaceHolder(X=X, E=E, y=y).mask(node_mask)