File size: 9,144 Bytes
6b59850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import torch
import utils
from diffusion import diffusion_utils


class PredefinedNoiseSchedule(torch.nn.Module):
    """
    Predefined noise schedule. Essentially creates a lookup array for predefined (non-learned) noise schedules.
    """

    def __init__(self, noise_schedule, timesteps):
        super(PredefinedNoiseSchedule, self).__init__()
        self.timesteps = timesteps

        if noise_schedule == 'cosine':
            alphas2 = diffusion_utils.cosine_beta_schedule(timesteps)
        elif noise_schedule == 'custom':
            raise NotImplementedError()
        else:
            raise ValueError(noise_schedule)

        # print('alphas2', alphas2)

        sigmas2 = 1 - alphas2

        log_alphas2 = np.log(alphas2)
        log_sigmas2 = np.log(sigmas2)

        log_alphas2_to_sigmas2 = log_alphas2 - log_sigmas2     # (timesteps + 1, )

        # print('gamma', -log_alphas2_to_sigmas2)

        self.gamma = torch.nn.Parameter(
            torch.from_numpy(-log_alphas2_to_sigmas2).float(),
            requires_grad=False)

    def forward(self, t):
        t_int = torch.round(t * self.timesteps).long()
        return self.gamma[t_int]



class PredefinedNoiseScheduleDiscrete(torch.nn.Module):
    """
    Predefined noise schedule. Essentially creates a lookup array for predefined (non-learned) noise schedules.
    """

    def __init__(self, noise_schedule, timesteps):
        super(PredefinedNoiseScheduleDiscrete, self).__init__()
        self.timesteps = timesteps

        if noise_schedule == 'cosine':
            betas = diffusion_utils.cosine_beta_schedule_discrete(timesteps)
        elif noise_schedule == 'custom':
            betas = diffusion_utils.custom_beta_schedule_discrete(timesteps)
        else:
            raise NotImplementedError(noise_schedule)

        self.register_buffer('betas', torch.from_numpy(betas).float())

        self.alphas = 1 - torch.clamp(self.betas, min=0, max=0.9999)

        log_alpha = torch.log(self.alphas)
        log_alpha_bar = torch.cumsum(log_alpha, dim=0)
        self.alphas_bar = torch.exp(log_alpha_bar)
        # print(f"[Noise schedule: {noise_schedule}] alpha_bar:", self.alphas_bar)

    def forward(self, t_normalized=None, t_int=None):
        assert int(t_normalized is None) + int(t_int is None) == 1
        if t_int is None:
            t_int = torch.round(t_normalized * self.timesteps)
        
        return self.betas[t_int.long()]

    def get_alpha_bar(self, t_normalized=None, t_int=None):
        assert int(t_normalized is None) + int(t_int is None) == 1
        if t_int is None:
            t_int = torch.round(t_normalized * self.timesteps)
        return self.alphas_bar.to(t_int.device)[t_int.long()]


class DiscreteUniformTransition:
    def __init__(self, x_classes: int, e_classes: int, y_classes: int):
        self.X_classes = x_classes
        self.E_classes = e_classes
        self.y_classes = y_classes
        self.u_x = torch.ones(1, self.X_classes, self.X_classes)
        if self.X_classes > 0:
            self.u_x = self.u_x / self.X_classes

        self.u_e = torch.ones(1, self.E_classes, self.E_classes)
        if self.E_classes > 0:
            self.u_e = self.u_e / self.E_classes

        self.u_y = torch.ones(1, self.y_classes, self.y_classes)
        if self.y_classes > 0:
            self.u_y = self.u_y / self.y_classes

    def get_Qt(self, beta_t, device):
        """ Returns one-step transition matrices for X and E, from step t - 1 to step t.
        Qt = (1 - beta_t) * I + beta_t / K

        beta_t: (bs)                         noise level between 0 and 1
        returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
        """
        beta_t = beta_t.unsqueeze(1)
        beta_t = beta_t.to(device)
        self.u_x = self.u_x.to(device)
        self.u_e = self.u_e.to(device)
        self.u_y = self.u_y.to(device)

        q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(self.X_classes, device=device).unsqueeze(0)
        q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(self.E_classes, device=device).unsqueeze(0)
        q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(self.y_classes, device=device).unsqueeze(0)

        return utils.PlaceHolder(X=q_x, E=q_e, y=q_y)

    def get_Qt_bar(self, alpha_bar_t, device):
        """ Returns t-step transition matrices for X and E, from step 0 to step t.
        Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K

        alpha_bar_t: (bs)         Product of the (1 - beta_t) for each time step from 0 to t.
        returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
        """
        alpha_bar_t = alpha_bar_t.unsqueeze(1)

        alpha_bar_t = alpha_bar_t.to(device)
        self.u_x = self.u_x.to(device)
        self.u_e = self.u_e.to(device)
        self.u_y = self.u_y.to(device)

        q_x = alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_x
        q_e = alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_e
        q_y = alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_y

        return utils.PlaceHolder(X=q_x, E=q_e, y=q_y)


class MarginalUniformTransition:
    def __init__(self, x_marginals, e_marginals, y_classes):
        self.X_classes = len(x_marginals)
        self.E_classes = len(e_marginals)
        self.y_classes = y_classes
        self.x_marginals = x_marginals
        self.e_marginals = e_marginals

        self.u_x = x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0)
        self.u_e = e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0)
        self.u_y = torch.ones(1, self.y_classes, self.y_classes)
        if self.y_classes > 0:
            self.u_y = self.u_y / self.y_classes

    def get_Qt(self, beta_t, device):
        """ Returns one-step transition matrices for X and E, from step t - 1 to step t.
        Qt = (1 - beta_t) * I + beta_t / K

        beta_t: (bs)                         noise level between 0 and 1
        returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy). """
        beta_t = beta_t.unsqueeze(1)
        beta_t = beta_t.to(device)
        self.u_x = self.u_x.to(device)
        self.u_e = self.u_e.to(device)
        self.u_y = self.u_y.to(device)

        q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(self.X_classes, device=device).unsqueeze(0)
        q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(self.E_classes, device=device).unsqueeze(0)
        q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(self.y_classes, device=device).unsqueeze(0)

        return utils.PlaceHolder(X=q_x, E=q_e, y=q_y)

    def get_Qt_bar(self, alpha_bar_t, device):
        """ Returns t-step transition matrices for X and E, from step 0 to step t.
        Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K

        alpha_bar_t: (bs)         Product of the (1 - beta_t) for each time step from 0 to t.
        returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
        """
        alpha_bar_t = alpha_bar_t.unsqueeze(1)
        alpha_bar_t = alpha_bar_t.to(device)
        self.u_x = self.u_x.to(device)
        self.u_e = self.u_e.to(device)
        self.u_y = self.u_y.to(device)

        q_x = alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_x
        q_e = alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_e
        q_y = alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_y

        return utils.PlaceHolder(X=q_x, E=q_e, y=q_y)


class AbsorbingStateTransition:
    def __init__(self, abs_state: int, x_classes: int, e_classes: int, y_classes: int):
        self.X_classes = x_classes
        self.E_classes = e_classes
        self.y_classes = y_classes

        self.u_x = torch.zeros(1, self.X_classes, self.X_classes)
        self.u_x[:, :, abs_state] = 1

        self.u_e = torch.zeros(1, self.E_classes, self.E_classes)
        self.u_e[:, :, abs_state] = 1

        self.u_y = torch.zeros(1, self.y_classes, self.y_classes)
        self.u_e[:, :, abs_state] = 1

    def get_Qt(self, beta_t):
        """ Returns two transition matrix for X and E"""
        beta_t = beta_t.unsqueeze(1)
        q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(self.X_classes).unsqueeze(0)
        q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(self.E_classes).unsqueeze(0)
        q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(self.y_classes).unsqueeze(0)
        return q_x, q_e, q_y

    def get_Qt_bar(self, alpha_bar_t):
        """ beta_t: (bs)
        Returns transition matrices for X and E"""

        alpha_bar_t = alpha_bar_t.unsqueeze(1)

        q_x = alpha_bar_t * torch.eye(self.X_classes).unsqueeze(0) + (1 - alpha_bar_t) * self.u_x
        q_e = alpha_bar_t * torch.eye(self.E_classes).unsqueeze(0) + (1 - alpha_bar_t) * self.u_e
        q_y = alpha_bar_t * torch.eye(self.y_classes).unsqueeze(0) + (1 - alpha_bar_t) * self.u_y

        return q_x, q_e, q_y