File size: 6,935 Bytes
5bc067b
 
 
 
 
 
 
46ac70a
 
 
5bc067b
46ac70a
318f973
46ac70a
5bc067b
 
46ac70a
5bc067b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import pickle
from transformers import BertTokenizer, BertForSequenceClassification
from transformers import BatchEncoding, PreTrainedTokenizerBase
from typing import Optional
from torch import Tensor

# Load the model
model_path = "Sayado/Model_PFE"
model = BertForSequenceClassification.from_pretrained(model_path)

# Load the tokenizer
tokenizer_path = "Sayado/Model_PFE" 
tokenizer = BertTokenizer.from_pretrained(tokenizer_path)

# Charger le label encoder
with open("label_encoder.pkl", "rb") as f:
    label_encoder = pickle.load(f)

class_labels = {
    7: ('Databases', 'info' ,'#4f9ef8'),
    1: ('Computation_and_Language', 'danger', '#d6293e'),
    9: ('Hardware_Architecture', 'warning' , '#f7c32e'),
    8: ('General_Literature', 'success' , '#0cbc87'),
    6: ('Cryptography_and_Security', 'primary', '#0f6fec'),
    5: ('Computers_and_Society', 'yellow', '#ffc107'),
    3: ('Computational_Engineering', 'purple' , '#6f42c1'),
    0: ('Artificial_Intelligence', 'cyan', '#0dcaf0'),
    2: ('Computational_Complexity', 'pink', '#d63384'),
    4: ('Computational_Geometry', 'orange', '#fd7e14')
}

def predict_class(text):
    # Tokenisation du texte
    inputs = transform_list_of_texts(text, tokenizer, 510, 510, 1, 2550)
    # Extraire le tenseur de la liste
    input_ids_tensor = inputs["input_ids"][0]
    attention_mask_tensor = inputs["attention_mask"][0]
    # Passage du texte à travers le modèle
    with torch.no_grad():
        outputs = model(input_ids=input_ids_tensor, attention_mask=attention_mask_tensor)

    # Application de la fonction softmax
    probabilities = torch.softmax(outputs.logits, dim=1)[0]

    # Identification de la classe majoritaire
    predicted_class_index = torch.argmax(probabilities).item()
    predicted_class = class_labels[predicted_class_index]

    # Créer un dictionnaire de pourcentages trié par probabilité
    sorted_percentages = {class_labels[idx]: probabilities[idx].item() * 100 for idx in range(len(class_labels))}
    sorted_percentages = dict(sorted(sorted_percentages.items(), key=lambda item: item[1], reverse=True))

    return predicted_class, sorted_percentages

def transform_list_of_texts(
    texts: list[str],
    tokenizer: PreTrainedTokenizerBase,
    chunk_size: int,
    stride: int,
    minimal_chunk_length: int,
    maximal_text_length: Optional[int] = None,
) -> BatchEncoding:
    model_inputs = [
        transform_single_text(text, tokenizer, chunk_size, stride, minimal_chunk_length, maximal_text_length)
        for text in texts
    ]
    input_ids = [model_input[0] for model_input in model_inputs]
    attention_mask = [model_input[1] for model_input in model_inputs]
    tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
    return BatchEncoding(tokens)


def transform_single_text(
    text: str,
    tokenizer: PreTrainedTokenizerBase,
    chunk_size: int,
    stride: int,
    minimal_chunk_length: int,
    maximal_text_length: Optional[int],
) -> tuple[Tensor, Tensor]:
    """Transforms (the entire) text to model input of BERT model."""
    if maximal_text_length:
        tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
    else:
        tokens = tokenize_whole_text(text, tokenizer)
    input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
    add_special_tokens_at_beginning_and_end(input_id_chunks, mask_chunks)
    add_padding_tokens(input_id_chunks, mask_chunks)
    input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
    return input_ids, attention_mask


def tokenize_whole_text(text: str, tokenizer: PreTrainedTokenizerBase) -> BatchEncoding:
    """Tokenizes the entire text without truncation and without special tokens."""
    tokens = tokenizer(text, add_special_tokens=False, truncation=False, return_tensors="pt")
    return tokens


def tokenize_text_with_truncation(
    text: str, tokenizer: PreTrainedTokenizerBase, maximal_text_length: int
) -> BatchEncoding:
    """Tokenizes the text with truncation to maximal_text_length and without special tokens."""
    tokens = tokenizer(
        text, add_special_tokens=False, max_length=maximal_text_length, truncation=True, return_tensors="pt"
    )
    return tokens


def split_tokens_into_smaller_chunks(
    tokens: BatchEncoding,
    chunk_size: int,
    stride: int,
    minimal_chunk_length: int,
) -> tuple[list[Tensor], list[Tensor]]:
    """Splits tokens into overlapping chunks with given size and stride."""
    input_id_chunks = split_overlapping(tokens["input_ids"][0], chunk_size, stride, minimal_chunk_length)
    mask_chunks = split_overlapping(tokens["attention_mask"][0], chunk_size, stride, minimal_chunk_length)
    return input_id_chunks, mask_chunks


def add_special_tokens_at_beginning_and_end(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
    """
    Adds special CLS token (token id = 101) at the beginning.
    Adds SEP token (token id = 102) at the end of each chunk.
    Adds corresponding attention masks equal to 1 (attention mask is boolean).
    """
    for i in range(len(input_id_chunks)):
        # adding CLS (token id 101) and SEP (token id 102) tokens
        input_id_chunks[i] = torch.cat([Tensor([101]), input_id_chunks[i], Tensor([102])])
        # adding attention masks  corresponding to special tokens
        mask_chunks[i] = torch.cat([Tensor([1]), mask_chunks[i], Tensor([1])])


def add_padding_tokens(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
    """Adds padding tokens (token id = 0) at the end to make sure that all chunks have exactly 512 tokens."""
    for i in range(len(input_id_chunks)):
        # get required padding length
        pad_len = 512 - input_id_chunks[i].shape[0]
        # check if tensor length satisfies required chunk size
        if pad_len > 0:
            # if padding length is more than 0, we must add padding
            input_id_chunks[i] = torch.cat([input_id_chunks[i], Tensor([0] * pad_len)])
            mask_chunks[i] = torch.cat([mask_chunks[i], Tensor([0] * pad_len)])


def stack_tokens_from_all_chunks(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> tuple[Tensor, Tensor]:
    """Reshapes data to a form compatible with BERT model input."""
    input_ids = torch.stack(input_id_chunks)
    attention_mask = torch.stack(mask_chunks)

    return input_ids.long(), attention_mask.int()


def split_overlapping(tensor: Tensor, chunk_size: int, stride: int, minimal_chunk_length: int) -> list[Tensor]:
    """Helper function for dividing 1-dimensional tensors into overlapping chunks."""
    result = [tensor[i : i + chunk_size] for i in range(0, len(tensor), stride)]
    if len(result) > 1:
        # ignore chunks with less than minimal_length number of tokens
        result = [x for x in result if len(x) >= minimal_chunk_length]
    return result