Spaces:
No application file
No application file
File size: 12,144 Bytes
92ef79b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import os
import json
import asyncio
from typing import List, Optional, Dict, Any
from loguru import logger
from pydantic import BaseModel
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_groq import ChatGroq
from langchain_ollama import ChatOllama
from config import MODEL_CONFIG, INITIAL_MESSAGES_CONFIG, MODE_CONFIG, NAVIGATION_FUNCTIONS, ROBOT_SPECIFIC_FUNCTIONS, ROBOT_NAMES
class LLMRequestConfig(BaseModel):
model_name: str = MODEL_CONFIG["default_model"]
max_tokens: int = MODEL_CONFIG["max_tokens"]
temperature: float = MODEL_CONFIG["temperature"]
frequency_penalty: float = MODEL_CONFIG["frequency_penalty"]
list_navigation_once: bool = True
provider: str = "openai"
# Resolve Pydantic namespace conflicts
model_config = {"protected_namespaces": ()}
def to_dict(self):
return {
"model_name": self.model_name,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"frequency_penalty": self.frequency_penalty,
"list_navigation_once": self.list_navigation_once,
"provider": self.provider
}
@classmethod
def from_dict(cls, config_dict):
return cls(**config_dict)
class LLMRequestHandler:
class Message(BaseModel):
role: str
content: str
def __init__(self,
# Support both old and new parameter names for backward compatibility
model_version: str = None,
model_name: str = None,
max_tokens: int = None,
temperature: float = None,
frequency_penalty: float = None,
list_navigation_once: bool = None,
model_type: str = None,
provider: str = None,
config: Optional[LLMRequestConfig] = None):
# Initialize with config or from individual parameters
if config:
self.config = config
else:
# Create config from individual parameters, giving priority to new names
self.config = LLMRequestConfig(
model_name=model_name or model_version or MODEL_CONFIG["default_model"],
max_tokens=max_tokens or MODEL_CONFIG["max_tokens"],
temperature=temperature or MODEL_CONFIG["temperature"],
frequency_penalty=frequency_penalty or MODEL_CONFIG["frequency_penalty"],
list_navigation_once=list_navigation_once if list_navigation_once is not None else True,
provider=provider or model_type or "openai"
)
# Store parameters for easier access
self.model_name = self.config.model_name
self.model_version = self.model_name # Alias for backward compatibility
self.max_tokens = self.config.max_tokens
self.temperature = self.config.temperature
self.frequency_penalty = self.config.frequency_penalty
self.list_navigation_once = self.config.list_navigation_once
self.provider = self.config.provider
self.model_type = self.provider # Alias for backward compatibility
# Store API keys
self.openai_api_key = os.getenv("OPENAI_API_KEY")
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
self.groq_api_key = os.getenv("GROQ_API_KEY")
# Create the appropriate LangChain LLM based on provider
self._setup_llm()
def _setup_llm(self):
"""Initialize the appropriate LangChain LLM based on provider."""
if "anthropic" in self.provider or "claude" in self.model_name:
self.llm = ChatAnthropic(
api_key=self.anthropic_api_key,
model_name=self.model_name,
max_tokens=self.max_tokens,
temperature=self.temperature
)
elif "ollama" in self.provider or "ollama" in self.model_name:
self.llm = ChatOllama(
model=self.model_name,
max_tokens=self.max_tokens,
temperature=self.temperature,
base_url="http://host.docker.internal:11434"
)
elif "groq" in self.provider or "llama" in self.model_name:
self.llm = ChatGroq(
api_key=self.groq_api_key,
model_name=self.model_name,
max_tokens=self.max_tokens,
temperature=self.temperature,
frequency_penalty=self.frequency_penalty
)
else: # Default to OpenAI
self.llm = ChatOpenAI(
api_key=self.openai_api_key,
model_name=self.model_name,
max_tokens=self.max_tokens,
temperature=self.temperature,
frequency_penalty=self.frequency_penalty
)
def get_config_dict(self):
"""Get a serializable configuration dictionary"""
return self.config.to_dict()
@staticmethod
def create_from_config_dict(config_dict):
"""Create a new handler instance from a config dictionary"""
config = LLMRequestConfig.from_dict(config_dict)
return LLMRequestHandler(config=config)
def load_object_data(self) -> Dict[str, Any]:
"""Load environment information (E) from a JSON file"""
json_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'ros2_ws', 'src', 'breakdown_function_handler', 'object_database', 'object_database.json'))
with open(json_path, 'r') as json_file:
data = json.load(json_file)
return self.format_env_object(data)
def format_env_object(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Format the environment data (E) for use in the prompt"""
formatted_env_object = {}
for obj in data:
object_name = obj['object_name']
target_position = obj['target_position']
shape = obj['shape']
formatted_env_object[object_name] = {
"position": {
"x": target_position["x"],
"y": target_position["y"]
},
"shape": shape
}
return formatted_env_object
def build_initial_messages(self, file_path: str, mode: str) -> List[Dict[str, str]]:
"""Build the initial prompt (P = (I, E, R, S))"""
with open(file_path, 'r', encoding='utf-8') as file:
user1 = file.read() # Example user instructions for few-shot learning (optional)
system = INITIAL_MESSAGES_CONFIG["system"]
# Load environment information (E)
env_objects = self.load_object_data()
# Create the user introduction with robot set (R), skills (S), and environment (E)
user_intro = INITIAL_MESSAGES_CONFIG["user_intro"]["default"] + INITIAL_MESSAGES_CONFIG["user_intro"].get(mode, "")
functions_description = MODE_CONFIG[mode].get("functions_description", "")
# Format user introduction with the instruction (I), robot set (R), skills (S), and environment (E)
user_intro = user_intro.format(
library=NAVIGATION_FUNCTIONS+ROBOT_SPECIFIC_FUNCTIONS,
env_objects=env_objects,
robot_names=ROBOT_NAMES,
fewshot_examples=user1,
functions_description=functions_description
)
assistant1 = INITIAL_MESSAGES_CONFIG["assistant"]
# Construct the messages (system, user, assistant)
messages = [
{"role": "system", "content": system},
{"role": "user", "content": user_intro},
{"role": "assistant", "content": assistant1}
]
return messages
def add_user_message(self, messages: List[Dict[str, str]], content: str) -> None:
"""Add a user message with natural language instruction (I)"""
user_message = self.Message(role="user", content=content)
messages.append(user_message.model_dump())
def _convert_to_langchain_messages(self, full_history: List[Dict[str, str]]):
"""Convert traditional message format to LangChain message objects"""
lc_messages = []
for msg in full_history:
if msg["role"] == "system":
lc_messages.append(SystemMessage(content=msg["content"]))
elif msg["role"] == "user":
lc_messages.append(HumanMessage(content=msg["content"]))
elif msg["role"] == "assistant":
lc_messages.append(AIMessage(content=msg["content"]))
return lc_messages
async def make_completion(self, full_history: List[Dict[str, str]]) -> Optional[str]:
"""Make a completion request to the selected model using LangChain"""
logger.debug(f"Using model: {self.model_name}")
try:
# Convert traditional messages to LangChain message format
lc_messages = self._convert_to_langchain_messages(full_history)
# Create a chat prompt template
chat_prompt = ChatPromptTemplate.from_messages(lc_messages)
# Get the response
chain = chat_prompt | self.llm
response = await chain.ainvoke({})
# Extract the content from the response
return response.content if hasattr(response, 'content') else str(response)
except Exception as e:
logger.error(f"Error making completion: {e}")
return None
if __name__ == "__main__":
async def main():
selected_model_index = 3 # 0 for OpenAI, 1 for Anthropic, 2 for LLaMA, 3 for Ollama
model_options = MODEL_CONFIG["model_options"]
# Choose the model based on selected_model_index
if selected_model_index == 0:
model = model_options[0]
provider = "openai"
elif selected_model_index == 1:
model = model_options[4]
provider = "anthropic"
elif selected_model_index == 2:
model = model_options[6]
provider = "groq"
elif selected_model_index == 3:
model = "llama3"
provider = "ollama"
else:
raise ValueError("Invalid selected_model_index")
logger.debug("Starting test llm_request_handler with LangChain...")
config = LLMRequestConfig(
model_name=model,
list_navigation_once=True,
provider=provider
)
handler = LLMRequestHandler(config=config)
# Build initial messages based on the selected model
if selected_model_index == 0:
messages = handler.build_initial_messages("/root/share/QA_LLM_Module/prompts/swarm/dart.txt", "dart_gpt_4o")
elif selected_model_index == 1:
messages = handler.build_initial_messages("/root/share/QA_LLM_Module/prompts/swarm/dart.txt", "dart_claude_3_sonnet")
elif selected_model_index == 2:
messages = handler.build_initial_messages("/root/share/QA_LLM_Module/prompts/swarm/dart.txt", "dart_llama_3_3_70b")
elif selected_model_index == 3:
messages = handler.build_initial_messages("/root/share/QA_LLM_Module/prompts/swarm/dart.txt", "dart_ollama_llama3_1_8b")
# Add a natural language instruction (I) to the prompt
handler.add_user_message(messages, "Excavator 1 performs excavation, then excavator 2 performs, then dump 1 performs unload.")
# Request completion from the model
response = await handler.make_completion(messages)
logger.debug(f"Response from make_completion: {response}")
asyncio.run(main()) |