File size: 10,148 Bytes
b3f2e04
9405fcc
 
400833e
01de3f3
e9ee4ce
ea4f9ff
 
 
 
 
 
 
9405fcc
 
 
 
 
 
 
e95c543
9405fcc
ea4f9ff
 
9405fcc
e9ee4ce
9405fcc
 
 
02001b9
9405fcc
ea4f9ff
b7236f0
931a3c8
 
a29b766
 
9405fcc
 
07eca3d
2ba3409
9405fcc
 
 
2ba3409
9405fcc
 
 
 
 
7d6469d
636b6d7
 
 
 
 
 
 
 
 
 
2cbe8d3
636b6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a089483
 
636b6d7
 
 
 
 
 
 
 
 
 
a089483
b46ae9a
 
 
 
 
9405fcc
edd0581
 
 
5a8de00
edd0581
 
 
4bb6bc1
a709435
 
 
 
 
 
c48d832
a601a45
b46ae9a
bd650f6
b46ae9a
 
bd650f6
b46ae9a
ea4f9ff
 
4a7ad4a
 
b46ae9a
 
 
 
 
ea4f9ff
 
b46ae9a
 
 
 
 
 
 
a089483
8421023
a089483
25466a0
636b6d7
a089483
 
 
 
efec6dd
a089483
 
 
 
 
 
 
 
 
6f9fd0f
c84f54b
 
 
636b6d7
c84f54b
34903bd
a089483
 
 
 
 
 
 
 
b46ae9a
 
a601a45
b46ae9a
 
 
a47abbb
b46ae9a
 
ea4f9ff
59e2eb4
b46ae9a
 
 
 
 
 
 
 
 
 
 
 
 
4a7ad4a
 
bd650f6
 
4a7ad4a
ea4f9ff
a2459f1
9405fcc
 
 
 
d0bf66f
9405fcc
 
 
 
ea4f9ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
from random import randint
from all_models import models

from externalmod import gr_Interface_load

import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.


def load_fn(models):
    global models_load
    models_load = {}
    
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                print(error)
                m = gr.Interface(lambda: None, ['text'], ['image'])
            models_load.update({model: m})

load_fn(models)


num_models = 1
default_models = models[:num_models]
inference_timeout = 600

MAX_SEED=3999999999



def extend_choices(choices):
    return choices + (num_models - len(choices)) * ['NA']


def update_imgbox(choices):
    choices_plus = extend_choices(choices)
    return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus]

def gen_fn(model_str, prompt):
    if model_str == 'NA':
        return None
    noise = str('') #str(randint(0, 99999999999))
    return models_load[model_str](f'{prompt} {noise}')

#def gen_fnseed(model_str, prompt, useseed, **kwargs):
#    kwargs = {}
#    if model_str == 'NA':
#        return None
#    noise = str('') #str(randint(0, 99999999999))
#    kwargs["seed"] = useseed
#    return models_load[model_str](f'{prompt} {noise}', **kwargs)

async def infer(model_str, prompt, seed=1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    noise = ""
    kwargs["seed"] = seed
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fnseed(model_str, prompt, seed=1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result

def gen_fnsix(model_str, prompt):
    if model_str == 'NA':
        return None
    noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999))
    return models_load[model_str](f'{prompt} {noisesix}')
with gr.Blocks() as demo:
    gr.HTML(
    """
        <div>
        <p> <center><img src="https://huggingface.co/Yntec/OpenGenDiffusers/resolve/main/mpp.png" style="height:128px; width:469px; margin-top: -22px; margin-bottom: -64px;" span title="Free ai art image generator Printing Press"></center>
        </p>
    """
)    
    gr.HTML(
    """
        <div>
        <p> <center>For more than 900 models visit the <a href="https://huggingface.co/spaces/Yntec/PrintingPress">Printing Press</a>!</center>
        </p></div>
    """
)  
    with gr.Tab('One Image'):
        model_choice = gr.Dropdown(models, label = f'Choose a model from the {len(models)} available! Try clearing the box and typing on it to filter them!', value = models[0], filterable = True)
        txt_input = gr.Textbox(label = 'Your prompt:')
        
        max_imagesone = 1
        num_imagesone = gr.Slider(1, max_imagesone, value = max_imagesone, step = 1, label = 'Nobody gets to see this label so I can put here whatever I want!', visible = False)
        
        gen_button = gr.Button('Generate')
        #stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_button.click(lambda s: gr.update(interactive = True), None)
        
        with gr.Row():
            output = [gr.Image(label = '') for _ in range(max_imagesone)]

        for i, o in enumerate(output):
            img_in = gr.Number(i, visible = False)
            num_imagesone.change(lambda i, n: gr.update(visible = (i < n)), [img_in, num_imagesone], o, show_progress = False)
            gen_event = gen_button.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_in, num_imagesone, model_choice, txt_input], o, concurrency_limit=None, queue=False)
            #stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, <a href="https://huggingface.co/spaces/Yntec/Diffusion60XX">Diffusion60XX</a> and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>!
        </p>
    """
)
    with gr.Tab('Seed it!'):
        model_choiceseed = gr.Dropdown(models, label = f'Choose a model from the {len(models)} available! Try clearing the box and typing on it to filter them!', value = models[0], filterable = True)
        txt_inputseed = gr.Textbox(label = 'Your prompt:')
        seed = gr.Slider(label="Use a seed to replicate the same image later", info="Max 3999999999", minimum=0, maximum=MAX_SEED, step=1, value=1)
        
        max_imagesseed = 1
        num_imagesseed = gr.Slider(1, max_imagesone, value = max_imagesone, step = 1, label = 'One, because more would make it produce identical images with the seed', visible = False)
        
        gen_buttonseed = gr.Button('Generate an image using the seed')
        #stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_button.click(lambda s: gr.update(interactive = True), None)
        
        with gr.Row():
            outputseed = [gr.Image(label = '') for _ in range(max_imagesseed)]

        for i, o in enumerate(outputseed):
            img_is = gr.Number(i, visible = False)
            num_imagesseed.change(lambda i, n: gr.update(visible = (i < n)), [img_is, num_imagesseed], o, show_progress = False)
            #gen_eventseed = gen_buttonseed.click(lambda i, n, m, t, n1: gen_fnseed(m, t, n1) if (i < n) else None, [img_is, num_imagesseed, model_choiceseed, txt_inputseed, useseed], o, concurrency_limit=None, queue=False)

            gen_eventseed = gr.on(triggers=[gen_buttonseed.click, txt_inputseed.submit],
                               fn=lambda i, n, m, t, n1: gen_fnseed(m, t, n1) if (i < n) else None,
                               inputs=[img_is, num_imagesseed, model_choiceseed, txt_inputseed, seed], outputs=[o],
                                       concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
                        
            #stop_button.click(lambda s: gr.update(interactive = False), None, stop_button, cancels = [gen_event])
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>!
        </p>
    """
)
    with gr.Tab('Up To Six'):
        model_choice2 = gr.Dropdown(models, label = f'Choose a model from the {len(models)} available! Try clearing the box and typing on it to filter them!', value = models[0], filterable = True)
        txt_input2 = gr.Textbox(label = 'Your prompt:')
        
        max_images = 6
        num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images (if you want less than 6 decrease them slowly until they match the boxes below)')
        
        gen_button2 = gr.Button('Generate up to 6 images in up to 3 minutes total')
        #stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False)
        gen_button2.click(lambda s: gr.update(interactive = True), None)
        gr.HTML(
        """
            <div style="text-align: center; max-width: 1200px; margin: 0 auto;">
              <div>
                <body>
                <div class="center"><p style="margin-bottom: 10px; color: #000000;">Scroll down to see more images (they generate in a random order).</p>
                </div>
                </body>
              </div>
            </div>
        """
               )
        with gr.Column():
            output2 = [gr.Image(label = '') for _ in range(max_images)]

        for i, o in enumerate(output2):
            img_i = gr.Number(i, visible = False)
            num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o, show_progress = False)
            gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fnsix(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o, concurrency_limit=None, queue=False)
            #stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2])
        with gr.Row():
            gr.HTML(
    """
        <div class="footer">
        <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>!
        </p>
    """
)

demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(show_api=False, max_threads=400)