File size: 6,640 Bytes
5d87992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright Niantic 2021. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the ManyDepth licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.

import os
import time
import json
import argparse
import numpy as np
from PIL import Image
import matplotlib as mpl
import matplotlib.cm as cm

import torch
from torch import Tensor
import torchvision
from torchvision import transforms
import torch.nn.functional as F

from src.networks import *
from utils import transformation_from_parameters, disp_to_depth, line


def load_and_preprocess_image(image, resize_width, resize_height):
    image_ori = image.convert('RGB')
    W, H = image_ori.size
    W_resized = W - W % 32
    H_resized = H - H % 32
    img_ori_npy = np.array(image_ori)[0:H_resized, 0:W_resized]

    image = image_ori.resize((resize_width, resize_height), Image.Resampling.LANCZOS)
    image = transforms.ToTensor()(image)
    image_ori = transforms.ToTensor()(img_ori_npy).unsqueeze(0)
    image = line(image).unsqueeze(0)
    if torch.cuda.is_available():
        return image_ori.cuda(), image.cuda(), (H, W)
    return image_ori, image, (H, W)

def load_and_preprocess_intrinsics(intrinsics_path, resize_width, resize_height):
    K = np.eye(4)
    with open(intrinsics_path, 'r') as f:
        K[:3, :3] = np.array(json.load(f))

    # Convert normalised intrinsics to 1/4 size unnormalised intrinsics.
    # (The cost volume construction expects the intrinsics corresponding to 1/4 size images)
    K[0, :] *= resize_width // 4
    K[1, :] *= resize_height // 4

    invK = torch.Tensor(np.linalg.pinv(K)).unsqueeze(0)
    K = torch.Tensor(K).unsqueeze(0)

    if torch.cuda.is_available():
        return K.cuda(), invK.cuda()
    return K, invK

def tensor2img(img: Tensor) -> np.ndarray:
    return (255.0 * img.permute(1, 2, 0).cpu().detach().numpy()).astype(np.uint8)


def test_simple(image: Image):
    """Function to predict for a single image or folder of images
    """
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    
    # Loading pretrained model
    encoder_dict = torch.load("src/weights/encoder.pth", map_location=device)
    encoder = ResnetEncoderMatching(18, False,
                                    input_width=encoder_dict['width'],
                                    input_height=encoder_dict['height'],
                                    adaptive_bins=True,
                                    min_depth_bin=encoder_dict['min_depth_bin'],
                                    max_depth_bin=encoder_dict['max_depth_bin'],
                                    depth_binning='linear',
                                    num_depth_bins=96)

    filtered_dict_enc = {k: v for k, v in encoder_dict.items() if k in encoder.state_dict()}
    encoder.load_state_dict(filtered_dict_enc)

    depth_decoder = DepthDecoder(num_ch_enc=encoder.num_ch_enc, scales=range(4))

    loaded_dict = torch.load("src/weights/depth.pth", map_location=device)
    depth_decoder.load_state_dict(loaded_dict)

    pose_enc_dict = torch.load("src/weights/pose_encoder.pth", map_location=device)
    pose_dec_dict = torch.load("src/weights/pose.pth", map_location=device)

    pose_enc = ResnetEncoder(18, False, num_input_images=2)
    pose_dec = PoseDecoder(pose_enc.num_ch_enc, 
                            num_input_features=1,
                            num_frames_to_predict_for=2)

    pose_enc.load_state_dict(pose_enc_dict, strict=True)
    pose_dec.load_state_dict(pose_dec_dict, strict=True)
    
    restoration_dict = torch.load("src/weights/uie_model.pth", map_location=device)
    uie_model = MainModel()
    uie_model.load_state_dict(restoration_dict, strict=False)

    # Setting states of networks
    encoder.eval()
    depth_decoder.eval()
    pose_enc.eval()
    pose_dec.eval()
    uie_model.eval()
    if torch.cuda.is_available():
        encoder.cuda()
        depth_decoder.cuda()
        pose_enc.cuda()
        pose_dec.cuda()
        uie_model.cuda()

    # Load input data
    input_image_ori, input_image, original_size = load_and_preprocess_image(image,
                                                    resize_width=encoder_dict['width'],
                                                    resize_height=encoder_dict['height'])
    source_image_ori, source_image, _ = load_and_preprocess_image(image,
                                            resize_width=encoder_dict['width'],
                                            resize_height=encoder_dict['height'])

    K, invK = load_and_preprocess_intrinsics('canyons_intrinsics.json',
                                             resize_width=encoder_dict['width'],
                                             resize_height=encoder_dict['height'])

    with torch.no_grad():

        # Estimate poses
        pose_inputs = [source_image, input_image]
        pose_inputs = [pose_enc(torch.cat(pose_inputs, 1))]
        axisangle, translation = pose_dec(pose_inputs)
        pose = transformation_from_parameters(axisangle[:, 0], translation[:, 0], invert=True)

        pose *= 0  # zero poses are a signal to the encoder not to construct a cost volume
        source_image *= 0

        # Estimate depth
        output, lowest_cost, _ = encoder(current_image=input_image,
                                         lookup_images=source_image.unsqueeze(1),
                                         poses=pose.unsqueeze(1),
                                         K=K,
                                         invK=invK,
                                         min_depth_bin=encoder_dict['min_depth_bin'],
                                         max_depth_bin=encoder_dict['max_depth_bin'])

        output = depth_decoder(output)

        sigmoid_output = output[("disp", 0)]
        _, depth_output = disp_to_depth(sigmoid_output, min_depth=0.1, max_depth=20)
        sigmoid_output_resized = F.interpolate(
            sigmoid_output, original_size, mode="bilinear", align_corners=False)
        sigmoid_output_resized = sigmoid_output_resized.cpu().numpy()[:, 0]
        depth = F.interpolate(
            depth_output, input_image_ori.shape[2:], mode="bilinear", align_corners=False)
     
        beta, J, A = uie_model(input_image_ori)

        beta[0] = 5.0 * beta[0]
        beta[1] = 5.0 * beta[1]
        
        t1 = torch.exp(-beta[0] * depth)
        D1 = J * t1
        B1 = (1 - torch.exp(-beta[1] * depth)) * A
        I_rec = D1 + B1
        
        J_out = Image.open(tensor2img(J[0]))
        
        return J_out