File size: 4,141 Bytes
a7dedf9
 
 
c628976
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dc50a
227d44e
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from torch import nn, Tensor
import open_clip

from ..utils import ConvRefine, ConvUpsample
from ..utils import _get_norm_layer, _get_activation


mobileclip_names_and_weights = {
    "MobileCLIP-S1": ["datacompdr"],
    "MobileCLIP-S2": ["datacompdr"],
}


refiner_channels = {
    "MobileCLIP-S1": 1024,
    "MobileCLIP-S2": 1280,
}

refiner_groups = {
    "MobileCLIP-S1": 2,
    "MobileCLIP-S2": 2,
}


class MobileCLIP(nn.Module):
    def __init__(
        self,
        model_name: str,
        weight_name: str,
        block_size: int = 16,
        norm: str = "none",
        act: str = "none"
    ) -> None:
        super().__init__()
        assert model_name in mobileclip_names_and_weights, f"Model name should be one of {list(mobileclip_names_and_weights.keys())}, but got {model_name}."
        assert weight_name in mobileclip_names_and_weights[model_name], f"Pretrained should be one of {mobileclip_names_and_weights[model_name]}, but got {weight_name}."
        assert block_size in [32, 16, 8], f"block_size should be one of [32, 16, 8], got {block_size}"
        self.model_name, self.weight_name = model_name, weight_name
        self.block_size = block_size

        # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
        model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual

        self.stem = model.trunk.stem
        self.stages = model.trunk.stages

        self.depth = len(model.trunk.stages)

        self.final_conv = model.trunk.final_conv

        self.in_features, self.out_features = model.trunk.head.fc.in_features, model.trunk.head.fc.out_features

        # refine_block = LightConvRefine if model_name == "MobileCLIP-S1" else ConvRefine
        # upsample_block = LightConvUpsample if model_name == "MobileCLIP-S1" else ConvUpsample

        if norm == "bn":
            norm_layer = nn.BatchNorm2d
        elif norm == "ln":
            norm_layer = nn.LayerNorm
        else:
            norm_layer = _get_norm_layer(model)
        
        if act == "relu":
            activation = nn.ReLU(inplace=True)
        elif act == "gelu":
            activation = nn.GELU()
        else:
            activation = _get_activation(model)

        if block_size == 32:
            self.refiner = ConvRefine(
                in_channels=self.in_features,
                out_channels=self.in_features,
                norm_layer=norm_layer,
                activation=activation,
                groups=refiner_groups[model_name],
            )
        elif block_size == 16:
            self.refiner = ConvUpsample(
                in_channels=self.in_features,
                out_channels=self.in_features,
                norm_layer=norm_layer,
                activation=activation,
                groups=refiner_groups[self.model_name],
            )
        else:  # block_size == 8
            self.refiner = nn.Sequential(
                ConvUpsample(
                    in_channels=self.in_features,
                    out_channels=self.in_features,
                    norm_layer=norm_layer,
                    activation=activation,
                    groups=refiner_groups[self.model_name],
                ),
                ConvUpsample(
                    in_channels=self.in_features,
                    out_channels=self.in_features,
                    norm_layer=norm_layer,
                    activation=activation,
                    groups=refiner_groups[self.model_name],
                ),
            )

    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)
        
        for idx in range(self.depth):
            x = self.stages[idx](x)
        
        x = self.final_conv(x)

        x = self.refiner(x)
        return x


def _mobileclip(
    model_name: str,
    weight_name: str,
    block_size: int = 16,
    norm: str = "none",
    act: str = "none"
) -> MobileCLIP:
    model = MobileCLIP(
        model_name=model_name,
        weight_name=weight_name,
        block_size=block_size,
        norm=norm,
        act=act
    )
    return model