File size: 5,125 Bytes
a7dedf9
 
 
c628976
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5dc50a
227d44e
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c628976
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from torch import nn, Tensor
import open_clip

from ..utils import ConvRefine
from ..utils import ConvUpsample, _get_norm_layer, _get_activation


convnext_names_and_weights = {
    "convnext_base": ["laion400m_s13b_b51k"],  # 107.49M
    "convnext_base_w": ["laion2b_s13b_b82k", "laion2b_s13b_b82k_augreg", "laion_aesthetic_s13b_b82k"],  # 107.75M
    "convnext_base_w_320": ["laion_aesthetic_s13b_b82k", "laion_aesthetic_s13b_b82k_augreg"],  # 107.75M
    "convnext_large_d": ["laion2b_s26b_b102k_augreg"],  # 217.46M
    "convnext_large_d_320": ["laion2b_s29b_b131k_ft", "laion2b_s29b_b131k_ft_soup"],  # 217.46M
    "convnext_xxlarge": ["laion2b_s34b_b82k_augreg", "laion2b_s34b_b82k_augreg_rewind", "laion2b_s34b_b82k_augreg_soup"]  # 896.88M
}

refiner_channels = {
    "convnext_base": 1024,
    "convnext_base_w": 1024,
    "convnext_base_w_320": 1024,
    "convnext_large_d": 1536,
    "convnext_large_d_320": 1536,
    "convnext_xxlarge": 3072,
}

refiner_groups = {
    "convnext_base": 1,
    "convnext_base_w": 1,
    "convnext_base_w_320": 1,
    "convnext_large_d": refiner_channels["convnext_large_d"] // 512,  # 3
    "convnext_large_d_320": refiner_channels["convnext_large_d_320"] // 512,  # 3
    "convnext_xxlarge": refiner_channels["convnext_xxlarge"] // 512,  # 6
}



class ConvNeXt(nn.Module):
    def __init__(
        self,
        model_name: str,
        weight_name: str,
        block_size: int = 16,
        norm: str = "none",
        act: str = "none"
    ) -> None:
        super(ConvNeXt, self).__init__()
        assert model_name in convnext_names_and_weights, f"Model name should be one of {list(convnext_names_and_weights.keys())}, but got {model_name}."
        assert weight_name in convnext_names_and_weights[model_name], f"Pretrained should be one of {convnext_names_and_weights[model_name]}, but got {weight_name}."
        assert block_size in [32, 16, 8], f"block_size should be one of [32, 16, 8], got {block_size}"
        self.model_name, self.weight_name = model_name, weight_name
        self.block_size = block_size

        # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
        model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
        
        self.stem = model.trunk.stem
        self.depth = len(model.trunk.stages)
        for idx, stage in enumerate(model.trunk.stages):
            setattr(self, f"stage{idx}", stage)

        if self.model_name in ["convnext_base", "convnext_base_w", "convnext_base_w_320", "convnext_xxlarge"]:
            self.in_features, self.out_features = model.head.proj.in_features, model.head.proj.out_features
        else:  # "convnext_large_d", "convnext_large_d_320":
            self.in_features, self.out_features = model.head.mlp.fc1.in_features, model.head.mlp.fc2.out_features

        if norm == "bn":
            norm_layer = nn.BatchNorm2d
        elif norm == "ln":
            norm_layer = nn.LayerNorm
        else:
            norm_layer = _get_norm_layer(model)
        
        if act == "relu":
            activation = nn.ReLU(inplace=True)
        elif act == "gelu":
            activation = nn.GELU()
        else:
            activation = _get_activation(model)
        
        if block_size == 32:
            self.refiner = ConvRefine(
                in_channels=self.in_features,
                out_channels=self.in_features,
                norm_layer=norm_layer,
                activation=activation,
                groups=refiner_groups[self.model_name],
            )
        elif block_size == 16:
            self.refiner = ConvUpsample(
                in_channels=self.in_features,
                out_channels=self.in_features,
                norm_layer=norm_layer,
                activation=activation,
                groups=refiner_groups[self.model_name],
            )
        else:  # block_size == 8
            self.refiner = nn.Sequential(
                ConvUpsample(
                    in_channels=self.in_features,
                    out_channels=self.in_features,
                    norm_layer=norm_layer,
                    activation=activation,
                    groups=refiner_groups[self.model_name],
                ),
                ConvUpsample(
                    in_channels=self.in_features,
                    out_channels=self.in_features,
                    norm_layer=norm_layer,
                    activation=activation,
                    groups=refiner_groups[self.model_name],
                ),
            )

    def forward(self, x: Tensor) -> Tensor:
        x = self.stem(x)

        for idx in range(self.depth):
            x = getattr(self, f"stage{idx}")(x)
        
        x = self.refiner(x)
        return x


def _convnext(
    model_name: str,
    weight_name: str,
    block_size: int = 16,
    norm: str = "none",
    act: str = "none"
) -> ConvNeXt:
    model = ConvNeXt(
        model_name=model_name,
        weight_name=weight_name,
        block_size=block_size,
        norm=norm,
        act=act
    )
    return model