File size: 7,643 Bytes
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) OpenMMLab. All rights reserved.
import hashlib
import os
import fitz
import pandas as pd
import textract
from bs4 import BeautifulSoup
from loguru import logger
from deepdoc.parser import RAGFlowPdfParser

class FileName:
    """Record file original name, state and copied filepath with text
    format."""

    def __init__(self, root: str, filename: str, _type: str):
        self.root = root
        self.prefix = filename.replace('/', '_')
        self.basename = os.path.basename(filename)
        self.origin = os.path.join(root, filename)
        self.copypath = ''
        self._type = _type
        self.state = True
        self.reason = ''
        self.jsonpath = ''
        self.imagefolder = ''
        self.htmlpath = ''

    def __str__(self):
        return '{},{},{},{}\n'.format(self.basename, self.copypath, self.state,
                                      self.reason)


class FileOperation:
    """Encapsulate all file reading operations."""

    def __init__(self):
        self.pdf_parser = RAGFlowPdfParser()
        self.image_suffix = ['.jpg', '.jpeg', '.png', '.bmp']
        self.md_suffix = '.md'
        self.text_suffix = ['.txt', '.text']
        self.excel_suffix = ['.xlsx', '.xls', '.csv']
        self.pdf_suffix = '.pdf'
        self.ppt_suffix = '.pptx'
        self.html_suffix = ['.html', '.htm', '.shtml', '.xhtml']
        self.word_suffix = ['.docx', '.doc']
        self.normal_suffix = [self.md_suffix
                              ] + self.text_suffix + self.excel_suffix + [
                                  self.pdf_suffix
                              ] + self.word_suffix + [self.ppt_suffix
                                                      ] + self.html_suffix

    def get_type(self, filepath: str):
        filepath = filepath.lower()
        if filepath.endswith(self.pdf_suffix):
            return 'pdf'

        if filepath.endswith(self.md_suffix):
            return 'md'

        if filepath.endswith(self.ppt_suffix):
            return 'ppt'

        for suffix in self.image_suffix:
            if filepath.endswith(suffix):
                return 'image'

        for suffix in self.text_suffix:
            if filepath.endswith(suffix):
                return 'text'

        for suffix in self.word_suffix:
            if filepath.endswith(suffix):
                return 'word'

        for suffix in self.excel_suffix:
            if filepath.endswith(suffix):
                return 'excel'

        for suffix in self.html_suffix:
            if filepath.endswith(suffix):
                return 'html'
        return None

    def md5(self, filepath: str):
        hash_object = hashlib.sha256()
        with open(filepath, 'rb') as file:
            chunk_size = 8192
            while chunk := file.read(chunk_size):
                hash_object.update(chunk)

        return hash_object.hexdigest()[0:8]

    def summarize(self, files: list):
        success = 0
        skip = 0
        failed = 0

        for file in files:
            if file.state:
                success += 1
            elif file.reason == 'skip':
                skip += 1
            else:
                logger.info('{} {}'.format(file.origin, file.reason))
                failed += 1

            logger.info('{} {}'.format(file.reason, file.copypath))
        logger.info('累计{}文件,成功{}个,跳过{}个,异常{}个'.format(len(files), success,
                                                      skip, failed))

    def scan_dir(self, repo_dir: str):
        files = []
        for root, _, filenames in os.walk(repo_dir):
            for filename in filenames:
                _type = self.get_type(filename)
                if _type is not None:
                    files.append(
                        FileName(root=root, filename=filename, _type=_type))
        return files

    def read_pdf(self, filepath: str):
        # load pdf and serialize table
        text_content, tables = self.pdf_parser(filepath, need_image=False, zoomin=3, return_html=True)
        # text = ''
        # with fitz.open(filepath) as pages:
        #     for page in pages:
        #         text += page.get_text()
        #         tables = page.find_tables()
        #         for table in tables:
        #             tablename = '_'.join(
        #                 filter(lambda x: x is not None and 'Col' not in x,
        #                        table.header.names))
        #             pan = table.to_pandas()
        #             json_text = pan.dropna(axis=1).to_json(force_ascii=False)
        #             text += tablename
        #             text += '\n'
        #             text += json_text
        #             text += '\n'
        return text_content, tables

    def read_excel(self, filepath: str):
        table = None
        if filepath.endswith('.csv'):
            table = pd.read_csv(filepath)
        else:
            table = pd.read_excel(filepath)
        if table is None:
            return ''
        json_text = table.dropna(axis=1).to_json(force_ascii=False)
        return json_text

    def read(self, filepath: str):
        file_type = self.get_type(filepath)

        text = ''
        tbls =[]
        if not os.path.exists(filepath):
            return text,tbls, None

        try:
            
            if file_type == 'md' or file_type == 'text':
                with open(filepath) as f:
                    text = f.read()

            elif file_type == 'pdf':
                text,tbls = self.read_pdf(filepath)

            elif file_type == 'excel':
                text += self.read_excel(filepath)

            elif file_type == 'word' or file_type == 'ppt':
                # https://stackoverflow.com/questions/36001482/read-doc-file-with-python
                # https://textract.readthedocs.io/en/latest/installation.html
                text = textract.process(filepath).decode('utf8')
                if file_type == 'ppt':
                    text = text.replace('\n', ' ')

            elif file_type == 'html':
                with open(filepath) as f:
                    soup = BeautifulSoup(f.read(), 'html.parser')
                    text += soup.text
            
        except Exception as e:
            logger.error((filepath, str(e)))
            return '',[], e
        text = text.replace('\n\n', '\n')
        text = text.replace('\n\n', '\n')
        text = text.replace('\n\n', '\n')
        text = text.replace('  ', ' ')
        text = text.replace('  ', ' ')
        text = text.replace('  ', ' ')
        return text, tbls, None


if __name__ == '__main__':
    def get_pdf_files(directory):
        pdf_files = []
        # 遍历目录
        for root, dirs, files in os.walk(directory):
            for file in files:
                # 检查文件扩展名是否为.pdf
                if file.lower().endswith('.pdf'):
                    # 将完整路径添加到列表中
                    pdf_files.append(os.path.abspath(os.path.join(root, file)))
        return pdf_files

    # 将你想要搜索的目录替换为下面的路径
    pdf_list = get_pdf_files('/home/khj/huixiangdou-web-online-data/hxd-bad-file')

    # 打印所有找到的PDF文件的绝对路径


    opr = FileOperation()
    for pdf_path in pdf_list:
        text, error = opr.read(pdf_path)
        print('processing {}'.format(pdf_path))
        if error is not None:
            # pdb.set_trace()
            print('')

        else:
            if text is not None:
                print(len(text))
            else:
                # pdb.set_trace()
                print('')