File size: 6,078 Bytes
7a919c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import os, sys
sys.path.insert(
    0,
    os.path.abspath(
        os.path.join(
            os.path.dirname(
                os.path.abspath(__file__)),
            '../../')))

from deepdoc.vision.seeit import draw_box
from deepdoc.vision import Recognizer, LayoutRecognizer, TableStructureRecognizer, OCR, init_in_out
from deepdoc.utils.file_utils import get_project_base_directory
import argparse
import re
import numpy as np


def main(args):
    images, outputs = init_in_out(args)
    if args.mode.lower() == "layout":
        labels = LayoutRecognizer.labels
        detr = Recognizer(
            labels,
            "layout",
            os.path.join(
                get_project_base_directory(),
                "rag/res/deepdoc/"))
    if args.mode.lower() == "tsr":
        labels = TableStructureRecognizer.labels
        detr = TableStructureRecognizer()
        ocr = OCR()

    layouts = detr(images, float(args.threshold))
    for i, lyt in enumerate(layouts):
        if args.mode.lower() == "tsr":
            #lyt = [t for t in lyt if t["type"] == "table column"]
            html = get_table_html(images[i], lyt, ocr)
            with open(outputs[i] + ".html", "w+") as f:
                f.write(html)
            lyt = [{
                "type": t["label"],
                "bbox": [t["x0"], t["top"], t["x1"], t["bottom"]],
                "score": t["score"]
            } for t in lyt]
        img = draw_box(images[i], lyt, labels, float(args.threshold))
        img.save(outputs[i], quality=95)
        print("save result to: " + outputs[i])


def get_table_html(img, tb_cpns, ocr):
    boxes = ocr(np.array(img))
    boxes = Recognizer.sort_Y_firstly(
        [{"x0": b[0][0], "x1": b[1][0],
          "top": b[0][1], "text": t[0],
          "bottom": b[-1][1],
          "layout_type": "table",
          "page_number": 0} for b, t in boxes if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
        np.mean([b[-1][1] - b[0][1] for b, _ in boxes]) / 3
    )

    def gather(kwd, fzy=10, ption=0.6):
        nonlocal boxes
        eles = Recognizer.sort_Y_firstly(
            [r for r in tb_cpns if re.match(kwd, r["label"])], fzy)
        eles = Recognizer.layouts_cleanup(boxes, eles, 5, ption)
        return Recognizer.sort_Y_firstly(eles, 0)

    headers = gather(r".*header$")
    rows = gather(r".* (row|header)")
    spans = gather(r".*spanning")
    clmns = sorted([r for r in tb_cpns if re.match(
        r"table column$", r["label"])], key=lambda x: x["x0"])
    clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)

    for b in boxes:
        ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
        if ii is not None:
            b["R"] = ii
            b["R_top"] = rows[ii]["top"]
            b["R_bott"] = rows[ii]["bottom"]

        ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
        if ii is not None:
            b["H_top"] = headers[ii]["top"]
            b["H_bott"] = headers[ii]["bottom"]
            b["H_left"] = headers[ii]["x0"]
            b["H_right"] = headers[ii]["x1"]
            b["H"] = ii

        ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
        if ii is not None:
            b["C"] = ii
            b["C_left"] = clmns[ii]["x0"]
            b["C_right"] = clmns[ii]["x1"]

        ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
        if ii is not None:
            b["H_top"] = spans[ii]["top"]
            b["H_bott"] = spans[ii]["bottom"]
            b["H_left"] = spans[ii]["x0"]
            b["H_right"] = spans[ii]["x1"]
            b["SP"] = ii

    html = """

    <html>

    <head>

    <style>

    ._table_1nkzy_11 {

      margin: auto;

      width: 70%%;

      padding: 10px;

    }

    ._table_1nkzy_11 p {

      margin-bottom: 50px;

      border: 1px solid #e1e1e1;

    }



    caption {

      color: #6ac1ca;

      font-size: 20px;

      height: 50px;

      line-height: 50px;

      font-weight: 600;

      margin-bottom: 10px;

    }



    ._table_1nkzy_11 table {

      width: 100%%;

      border-collapse: collapse;

    }



    th {

      color: #fff;

      background-color: #6ac1ca;

    }



    td:hover {

      background: #c1e8e8;

    }



    tr:nth-child(even) {

      background-color: #f2f2f2;

    }



    ._table_1nkzy_11 th,

    ._table_1nkzy_11 td {

      text-align: center;

      border: 1px solid #ddd;

      padding: 8px;

    }

    </style>

    </head>

    <body>

    %s

    </body>

    </html>

""" % TableStructureRecognizer.construct_table(boxes, html=True)
    return html


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--inputs',
                        help="Directory where to store images or PDFs, or a file path to a single image or PDF",
                        required=True)
    parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './layouts_outputs'",
                        default="./layouts_outputs")
    parser.add_argument(
        '--threshold',
        help="A threshold to filter out detections. Default: 0.5",
        default=0.5)
    parser.add_argument('--mode', help="Task mode: layout recognition or table structure recognition", choices=["layout", "tsr"],
                        default="layout")
    args = parser.parse_args()
    main(args)