Spaces:
Sleeping
Sleeping
File size: 9,545 Bytes
7a919c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
#!/usr/bin/env python3
# Copyright (c) OpenMMLab. All rights reserved.
"""HuixiangDou binary."""
import argparse
import os
import time
import json
import random
from multiprocessing import Process, Value
import pytoml
import requests
from aiohttp import web
from loguru import logger
from .service import ErrorCode, Worker, llm_serve
def parse_args():
"""Parse args."""
parser = argparse.ArgumentParser(description='Worker.')
parser.add_argument('--work_dir',
type=str,
default='workdir',
help='Working directory.')
parser.add_argument(
'--config_path',
default='config.ini',
type=str,
help='Worker configuration path. Default value is config.ini')
parser.add_argument('--standalone',
action='store_true',
default=False,
help='Auto deploy required Hybrid LLM Service.')
parser.add_argument('--step_by_step',
default='annotate', # 'annotate' or 'sparkle' or 'writting'
help='step by step mode')
args = parser.parse_args()
return args
def check_env(args):
"""Check or create config.ini and logs dir."""
if not os.path.exists('logs'):
os.makedirs('logs')
CONFIG_NAME = 'config.ini'
CONFIG_URL = 'https://raw.githubusercontent.com/InternLM/HuixiangDou/main/config.ini' # noqa E501
if not os.path.exists(CONFIG_NAME):
logger.warning(
f'{CONFIG_NAME} not found, download a template from {CONFIG_URL}.')
try:
response = requests.get(CONFIG_URL, timeout=60)
response.raise_for_status()
with open(CONFIG_NAME, 'wb') as f:
f.write(response.content)
except Exception as e:
logger.error(f'Failed to download file due to {e}')
raise e
if not os.path.exists(args.work_dir):
logger.warning(
f'args.work_dir dir not exist, auto create {args.work_dir}.')
os.makedirs(args.work_dir)
def build_reply_text(reply: str, references: list):
if len(references) < 1:
return reply
ret = reply
for ref in references:
ret += '\n'
ret += ref
return ret
def annotation(assistant, config: dict,k,n=50):
query = 'annotation'
feature_dir = os.path.join(config['feature_store']['work_dir'], 'cluster_features')
samples_json = os.path.join(feature_dir, f'cluster_features_{k}','samples.json')
with open(samples_json, 'r') as f:
samples = json.load(f)
f.close()
new_obj_list = []
for cluster_no in random.sample(samples.keys(), n):
chunk = '\n'.join(samples[cluster_no]['samples'][:10])
code, reply, cluster_no = assistant.annotate_cluster(
cluster_no=cluster_no,
chunk=chunk,
history=[],
groupname='')
references = f"cluster_no: {cluster_no}"
new_obj = {
'cluster_no': cluster_no,
'chunk': chunk,
'annotation': reply
}
new_obj_list.append(new_obj)
logger.info(f'{code}, {query}, {reply}, {references}')
with open(os.path.join(feature_dir, f'cluster_features_{k}', 'annotation.json'), 'w') as f:
json.dump(new_obj_list, f, indent=4, ensure_ascii=False)
f.close()
# def lark_send_only(assistant, fe_config: dict):
# queries = ['what is skin-gut axis?',"什么是肠皮轴?","肠道和皮肤的免疫细胞如何相互影响"]
# for query in queries:
# code, reply, references = assistant.generate(query=query,
# history=[],
# groupname='')
# logger.info(f'{code}, {query}, {reply}, {references}')
# reply_text = build_reply_text(reply=reply, references=references)
# if fe_config['type'] == 'lark' and code == ErrorCode.SUCCESS:
# # send message to lark group
# from .frontend import Lark
# lark = Lark(webhook=fe_config['webhook_url'])
# logger.info(f'send {reply} and {references} to lark group.')
# lark.send_text(msg=reply_text)
# def lark_group_recv_and_send(assistant, fe_config: dict):
# from .frontend import (is_revert_command, revert_from_lark_group,
# send_to_lark_group)
# msg_url = fe_config['webhook_url']
# lark_group_config = fe_config['lark_group']
# sent_msg_ids = []
# while True:
# # fetch a user message
# resp = requests.post(msg_url, timeout=10)
# resp.raise_for_status()
# json_obj = resp.json()
# if len(json_obj) < 1:
# # no user input, sleep
# time.sleep(2)
# continue
# logger.debug(json_obj)
# query = json_obj['content']
# if is_revert_command(query):
# for msg_id in sent_msg_ids:
# error = revert_from_lark_group(msg_id,
# lark_group_config['app_id'],
# lark_group_config['app_secret'])
# if error is not None:
# logger.error(
# f'revert msg_id {msg_id} fail, reason {error}')
# else:
# logger.debug(f'revert msg_id {msg_id}')
# time.sleep(0.5)
# sent_msg_ids = []
# continue
# code, reply, references = assistant.generate(query=query,
# history=[],
# groupname='')
# if code == ErrorCode.SUCCESS:
# json_obj['reply'] = build_reply_text(reply=reply,
# references=references)
# error, msg_id = send_to_lark_group(
# json_obj=json_obj,
# app_id=lark_group_config['app_id'],
# app_secret=lark_group_config['app_secret'])
# if error is not None:
# raise error
# sent_msg_ids.append(msg_id)
# else:
# logger.debug(f'{code} for the query {query}')
# def wechat_personal_run(assistant, fe_config: dict):
# """Call assistant inference."""
# async def api(request):
# input_json = await request.json()
# logger.debug(input_json)
# query = input_json['query']
# if type(query) is dict:
# query = query['content']
# code, reply, references = assistant.generate(query=query,
# history=[],
# groupname='')
# reply_text = build_reply_text(reply=reply, references=references)
# return web.json_response({'code': int(code), 'reply': reply_text})
# bind_port = fe_config['wechat_personal']['bind_port']
# app = web.Application()
# app.add_routes([web.post('/api', api)])
# web.run_app(app, host='0.0.0.0', port=bind_port)
def run():
"""Automatically download config, start llm server and run examples."""
args = parse_args()
check_env(args)
if args.standalone is True:
# hybrid llm serve
server_ready = Value('i', 0)
server_process = Process(target=llm_serve,
args=(args.config_path, server_ready))
server_process.daemon = True
server_process.start()
while True:
if server_ready.value == 0:
logger.info('waiting for server to be ready..')
time.sleep(3)
elif server_ready.value == 1:
break
else:
logger.error('start local LLM server failed, quit.')
raise Exception('local LLM path')
logger.info('Hybrid LLM Server start.')
# query by worker
with open(args.config_path, encoding='utf8') as f:
config = pytoml.load(f)
fe_config = config['frontend']
logger.info('Config loaded.')
assistant = Worker(work_dir=args.work_dir, config_path=args.config_path,language='en')
step = args.step_by_step
if step == 'annotate':
annotation(assistant, config, 500)
annotation(assistant, config, 200)
annotation(assistant, config, 100)
annotation(assistant, config, 50)
annotation(assistant, config, 20,n=20)
annotation(assistant, config, 10,n=10)
elif step == 'sparkle':
pass # TODO
elif step == 'writting':
pass # TODO
else:
logger.info(f'unsupported step_by_step mode {step}, please read `config.ini` description.')
# fe_type = fe_config['type']
# if fe_type == 'lark' or fe_type == 'none':
# lark_send_only(assistant, fe_config)
# elif fe_type == 'lark_group':
# lark_group_recv_and_send(assistant, fe_config)
# elif fe_type == 'wechat_personal':
# wechat_personal_run(assistant, fe_config)
# else:
# logger.info(
# f'unsupported fe_config.type {fe_type}, please read `config.ini` description.' # noqa E501
# )
# server_process.join()
if __name__ == '__main__':
run()
|