Spaces:
Sleeping
Sleeping
File size: 19,790 Bytes
7a919c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import argparse
import json
import time
import os
import glob
import random
import shutil
from enum import Enum
from multiprocessing import Process, Value
import gradio as gr
import pytoml
from loguru import logger
from huixiangdou.service import Worker, llm_serve, ArticleRetrieval, CacheRetriever, FeatureStore, FileOperation
class PARAM_CODE(Enum):
"""Parameter code."""
SUCCESS = 0
FAILED = 1
ERROR = 2
def parse_args():
"""Parse args."""
parser = argparse.ArgumentParser(description='Worker.')
parser.add_argument('--work_dir',
type=str,
default='workdir',
help='Working directory.')
parser.add_argument('--repo_dir',
type=str,
default='repodir',
help='Repository directory.')
parser.add_argument(
'--config_path',
default='config.ini',
type=str,
help='Worker configuration path. Default value is config.ini')
parser.add_argument('--standalone',
action='store_true',
default=True,
help='Auto deploy required Hybrid LLM Service.')
args = parser.parse_args()
return args
def get_ready(query:str,chunksize=None,k=None):
with open(CONFIG_PATH, encoding='utf8') as f:
config = pytoml.load(f)
workdir = config['feature_store']['work_dir']
repodir = config['feature_store']['repo_dir']
if query == 'repo_work': # no need to return assistant
return repodir, workdir, config
theme = ''
try:
with open(os.path.join(config['feature_store']['repo_dir'],'config.json'), 'r') as f:
repo_config = json.load(f)
theme = ' '.join(repo_config['keywords'])
except:
pass
if query == 'annotation':
if not chunksize or not k:
raise ValueError('chunksize or k not provided')
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
samples_json = os.path.join(clusterdir,'samples.json')
with open(samples_json, 'r') as f:
samples = json.load(f)
f.close()
return clusterdir, samples, assistant, theme
elif query == 'inspiration':
if not chunksize or not k:
raise ValueError('chunksize or k not provided')
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
annofile = os.path.join(clusterdir,'annotation.jsonl')
with open(annofile, 'r') as f:
annoresult = f.readlines()
f.close()
annoresult = [json.loads(obj) for obj in annoresult]
return clusterdir, annoresult, assistant, theme
elif query == 'summarize': # no need for params k
if not chunksize:
raise ValueError('chunksize not provided')
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
return assistant,theme
else:
raise ValueError('query not recognized')
def update_repo_info():
with open(CONFIG_PATH, encoding='utf8') as f:
config = pytoml.load(f)
repodir = config['feature_store']['repo_dir']
if os.path.exists(repodir):
pdffiles = glob.glob(os.path.join(repodir, '*.pdf'))
number_of_pdf = len(pdffiles)
if os.path.exists(os.path.join(repodir,'config.json')):
with open(os.path.join(repodir,'config.json'), 'r') as f:
repo_config = json.load(f)
keywords = repo_config['keywords']
length = repo_config['len']
retmax = repo_config['retmax']
return keywords,length,retmax,number_of_pdf
else:
return None,None,None,number_of_pdf
else:
return None,None,None,None
def upload_file(files):
repodir, workdir, _ = get_ready('repo_work')
if not os.path.exists(repodir):
os.makedirs(repodir)
for file in files:
destination_path = os.path.join(repodir, os.path.basename(file.name))
shutil.copy(file.name, destination_path)
return files
def generate_articles_repo(keywords:str,retmax:int):
keys= [k.strip() for k in keywords.split('\n')]
repodir, workdir, _ = get_ready('repo_work')
# 文献库只生成一次 所以每次生成文献库都要删除之前的文献库和数据库
if os.path.exists(repodir):
shutil.rmtree(repodir)
if os.path.exists(workdir):
shutil.rmtree(workdir)
articelfinder = ArticleRetrieval(keywords = keys,
repo_dir = repodir,
retmax = retmax)
articelfinder.initiallize()
keys,len,retmax,pdflen = update_repo_info()
newinfo = f"搜索得到文献:关键词: {keys}\n文献数量: {len}\n获取上限: {retmax}\n\n上传文献数量: {pdflen}"
return gr.Textbox(label="文献库概况",lines =1,
value = newinfo,visible = True)
def delete_articles_repo():
# 在这里运行生成数据库的函数
repodir, workdir, _ = get_ready('repo_work')
if os.path.exists(repodir):
shutil.rmtree(repodir)
if os.path.exists(workdir):
shutil.rmtree(workdir)
return gr.Textbox(label="文献库概况",lines =3,
value = '文献库和相关数据库已删除',
visible = True)
def update_repo():
keys,len,retmax,pdflen = update_repo_info()
if keys:
newinfo = f"搜索得到文献:关键词: {keys}\n文献数量: {len}\n获取上限: {retmax}\n\n上传文献数量: {pdflen}"
else:
if pdflen>0:
newinfo = f'上传文献数量: {pdflen}, 没有搜索文献'
else:
newinfo = '目前还没有文献库'
return gr.Textbox(label="文献库概况",lines =1,
value = newinfo,
visible = True)
def update_database_info():
with open(CONFIG_PATH, encoding='utf8') as f:
config = pytoml.load(f)
workdir = config['feature_store']['work_dir']
chunkdirs = glob.glob(os.path.join(workdir, 'chunksize_*'))
chunkdirs.sort()
list_of_chunksize = [int(chunkdir.split('_')[-1]) for chunkdir in chunkdirs]
# print(list_of_chunksize)
jsonobj = {}
for chunkdir in chunkdirs:
k_dir = glob.glob(os.path.join(chunkdir, 'cluster_features','cluster_features_*'))
k_dir.sort()
list_of_k = [int(k.split('_')[-1]) for k in k_dir]
jsonobj[int(chunkdir.split('_')[-1])] = list_of_k
new_options = [f"chunksize:{chunksize}, k:{k}" for chunksize in list_of_chunksize for k in jsonobj[chunksize]]
return new_options, jsonobj
def generate_database(chunksize:int,nclusters:str|list[str]):
# 在这里运行生成数据库的函数
repodir, workdir, _ = get_ready('repo_work')
if not os.path.exists(repodir):
return gr.Textbox(label="数据库已生成",value = '请先生成文献库',visible = True)
nclusters = [int(i) for i in nclusters]
# 文献库和数据库的覆盖删除逻辑待定
# 理论上 文献库只能生成一次 所以每次生成文献库都要删除之前的文献库和数据库
# 数据库可以根据文献库多次生成 暂不做删除 目前没有节省算力的逻辑 重复计算后覆盖 以后优化
# 不同的chunksize和nclusters会放在不同的文件夹下 不会互相覆盖
# if os.path.exists(workdir):
# shutil.rmtree(workdir)
cache = CacheRetriever(config_path=CONFIG_PATH)
fs_init = FeatureStore(embeddings=cache.embeddings,
reranker=cache.reranker,
chunk_size=chunksize,
n_clusters=nclusters,
config_path=CONFIG_PATH)
# walk all files in repo dir
file_opr = FileOperation()
files = file_opr.scan_dir(repo_dir=repodir)
fs_init.initialize(files=files, work_dir=workdir,file_opr=file_opr)
file_opr.summarize(files)
del fs_init
cache.pop('default')
texts, _ = update_database_info()
return gr.Textbox(label="数据库概况",value = '\n'.join(texts) ,visible = True)
def delete_database():
_, workdir, _ = get_ready('repo_work')
if os.path.exists(workdir):
shutil.rmtree(workdir)
return gr.Textbox(label="数据库概况",lines =3,value = '数据库已删除',visible = True)
def update_database_textbox():
texts, _ = update_database_info()
return gr.Textbox(label="数据库概况",value = '\n'.join(texts),visible = True)
def update_chunksize_dropdown():
_, jsonobj = update_database_info()
return gr.Dropdown(choices= jsonobj.keys())
def update_ncluster_dropdown(chunksize:int):
_, jsonobj = update_database_info()
nclusters = jsonobj[chunksize]
return gr.Dropdown(choices= nclusters)
def annotation(n,chunksize:int,nclusters:int):
'''
use llm to annotate cluster
n: percentage of clusters to annotate
'''
clusterdir, samples, assistant, theme = get_ready('annotation',chunksize,nclusters)
new_obj_list = []
n = round(n * len(samples.keys()))
for cluster_no in random.sample(samples.keys(), n):
chunk = '\n'.join(samples[cluster_no]['samples'][:10])
code, reply, cluster_no = assistant.annotate_cluster(
theme = theme,
cluster_no=cluster_no,
chunk=chunk,
history=[],
groupname='')
references = f"cluster_no: {cluster_no}"
new_obj = {
'cluster_no': cluster_no,
'chunk': chunk,
'annotation': reply
}
new_obj_list.append(new_obj)
logger.info(f'{code}, {query}, {reply}, {references}')
with open(os.path.join(clusterdir, 'annotation.jsonl'), 'a') as f:
json.dump(new_obj, f, ensure_ascii=False)
f.write('\n')
return '\n\n'.join([obj['annotation'] for obj in new_obj_list])
def inspiration(annotation:str,chunksize:int,nclusters:int):
clusterdir, annoresult, assistant, theme = get_ready('inspiration',chunksize,nclusters)
new_obj_list = []
if annotation is not None: # if the user wants to get inspiration from specific clusters only
annoresult = [obj for obj in annoresult if obj['annotation'] in [txt.strip() for txt in annotation.split('\n')]]
for index in random.sample(range(len(annoresult)), min(5, len(annoresult))):
cluster_no = annoresult[index]['cluster_no']
chunks = annoresult[index]['annotation']
code, reply = assistant.getinspiration(
theme = theme,
annotations = chunks,
history=[],
groupname='')
new_obj = {
'inspiration': reply,
'cluster_no': cluster_no
}
new_obj_list.append(new_obj)
logger.info(f'{code}, {query}, {cluster_no},{reply}')
with open(os.path.join(clusterdir, 'inspiration.jsonl'), 'a') as f:
json.dump(new_obj, f, ensure_ascii=False)
with open(os.path.join(clusterdir, 'inspiration.txt'), 'a') as f:
f.write(f'{reply}\n')
return '\n\n'.join(list(set([obj['inspiration'] for obj in new_obj_list])))
def getpmcurls(references):
urls = []
for ref in references:
if ref.startswith('PMC'):
refid = ref.replace('.txt','')
urls.append(f'https://www.ncbi.nlm.nih.gov/pmc/articles/{refid}/')
else:
urls.append(ref)
return urls
def summarize_text(query,chunksize:int):
assistant,_ = get_ready('summarize',chunksize=chunksize,k=None)
code, reply, references = assistant.generate(query=query,
history=[],
groupname='')
logger.info(f'{code}, {query}, {reply}, {references}')
urls = getpmcurls(references)
mds = '\n'.join([f'[{ref}]({url})' for ref,url in zip(references,urls)])
return reply, gr.Markdown(label="参考文献",value = mds)
# start service
if __name__ == '__main__':
args = parse_args()
CONFIG_PATH = args.config_path
if args.standalone is True:
# hybrid llm serve
server_ready = Value('i', 0)
server_process = Process(target=llm_serve,
args=(args.config_path, server_ready))
server_process.start()
while True:
if server_ready.value == 0:
logger.info('waiting for server to be ready..')
time.sleep(3)
elif server_ready.value == 1:
break
else:
logger.error('start local LLM server failed, quit.')
raise Exception('local LLM path')
logger.info('Hybrid LLM Server start.')
with gr.Blocks() as demo:
with gr.Tab("文献查找+数据库生成"):
gr.Markdown("这里可以查找文献,生成数据库")
with gr.Row():
with gr.Column(scale=1):
input_keys = gr.Textbox(label="感兴趣的关键词",
lines = 3)
retmax = gr.Slider(
minimum=0,
maximum=1000,
value=500,
interactive=True,
label="查多少",
)
with gr.Column(scale=2):
file_output = gr.File()
upload_button = gr.UploadButton("Click to Upload PDF",
file_types=[".pdf",".csv",".doc"],
file_count="multiple")
with gr.Row():
generate_repo_button = gr.Button("生成文献库")
delete_repo_button = gr.Button("删除文献库")
update_repo_button = gr.Button("更新文献库情况")
repo_summary =gr.Textbox(label= '文献库概况', value="目前还没有文献库")
generate_repo_button.click(generate_articles_repo,
inputs=[input_keys,retmax],
outputs = [repo_summary])
delete_repo_button.click(delete_articles_repo, inputs=None,
outputs = repo_summary)
update_repo_button.click(update_repo, inputs=None,
outputs = repo_summary)
upload_button.upload(upload_file, upload_button, file_output)
with gr.Accordion("数据库构建参数", open=True):
gr.Markdown("[如何选择数据库构建参数]('https://github.com/jabberwockyang/MedicalReviewAgent/tree/main')")
chunksize = gr.Slider(label="Chunk Size",
info= 'How long you want the chunk to be?',
minimum=128, maximum=4096,value=1024,step=1,
interactive=True)
ncluster = gr.CheckboxGroup(["10", "20", "50", '100','200','500','1000'],
# default=["20", "50", '100'],
label="Number of Clusters",
info="How many Clusters you want to generate")
with gr.Row():
gene_database_button = gr.Button("生成数据库")
delete_database_button = gr.Button("删除数据库")
update_database_button = gr.Button("更新数据库情况")
database_summary = gr.Textbox(label="数据库概况",lines = 1,value="目前还没有数据库")
gene_database_button.click(generate_database, inputs=[chunksize,ncluster],
outputs = database_summary)
update_database_button.click(update_database_textbox,inputs=None,
outputs = [database_summary])
delete_database_button.click(delete_database, inputs=None,
outputs = database_summary)
with gr.Tab("写综述"):
gr.Markdown("""
1. 如果没啥想法 可以依次点击 读读文献 和 获取灵感
2. 如果有想法 直接输入到 想写什么 点击写综述
""")
with gr.Accordion("聚类标注相关参数", open=True):
with gr.Row():
update_options = gr.Button("更新数据库情况", scale=0)
chunksize = gr.Dropdown([], label="选择块大小", scale=0)
nclusters = gr.Dropdown([], label="选择聚类数", scale=0)
ntoread = gr.Slider(
minimum=0,maximum=1,value=0.5,
interactive=True,
label="抽样标注比例",
)
annotation_button = gr.Button("抽样标注文章聚类")
annotation_output = gr.Textbox(label="文章聚类标注/片段摘要",
lines = 5,
interactive= True,
show_copy_button=True)
inspiration_button = gr.Button("获取灵感")
inspiration_output = gr.Textbox(label="灵光一现",
lines = 5,
show_copy_button=True)
query = gr.Textbox(label="想写什么")
write_button = gr.Button("写综述")
output_text = gr.Textbox(label="看看",lines=10)
output_references = gr.Markdown(label="参考文献")
update_options.click(update_chunksize_dropdown,
outputs=[chunksize])
chunksize.change(update_ncluster_dropdown,
inputs=[chunksize],
outputs= [nclusters])
annotation_button.click(annotation,
inputs = [ntoread, chunksize, nclusters],
outputs=[annotation_output])
inspiration_button.click(inspiration,
inputs= [annotation_output, chunksize, nclusters],
outputs=[inspiration_output])
write_button.click(summarize_text,
inputs=[query, chunksize],
outputs =[output_text,output_references])
demo.launch(share=False, server_name='0.0.0.0', debug=True,show_error=True)
|