File size: 6,201 Bytes
8b1feb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251212
 
8b1feb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251212
8b1feb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251212
8b1feb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import clip
import cv2, youtube_dl
from PIL import Image,ImageDraw, ImageFont
import os
from functools import partial
from multiprocessing.pool import Pool
import shutil
from pathlib import Path
import numpy as np
import datetime
import gradio as gr


# load model and preprocess
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32")

def select_video_format(url, format_note='480p', ext='mp4'):
    defaults = ['480p', '360p','240p','144p']
    ydl_opts = {}
    ydl = youtube_dl.YoutubeDL(ydl_opts)
    info_dict = ydl.extract_info(url, download=False)
    formats = info_dict.get('formats', None)
    available_format_notes = set([f['format_note'] for f in formats])
    if format_note not in available_format_notes:
        format_note = [d for d in defaults if d in available_format_notes][0]
    formats = [f for f in formats if f['format_note'] == format_note and f['ext'] == ext]
    format = formats[0]
    format_id = format.get('format_id', None)
    fps = format.get('fps', None)
    print(f'format selected: {format}')
    return(format_id, fps)

def download_video(url,format_id):
    ydl_opts = {
      'format':format_id,
      'outtmpl': "%(id)s.%(ext)s"}
    meta = youtube_dl.YoutubeDL(ydl_opts).extract_info(url)
    save_location = meta['id'] + '.' + meta['ext']
    return(save_location)

def read_frames(dest_path):
  original_images = []
  images = []
  for filename in sorted(dest_path.glob('*.jpg'),key=lambda p: int(p.stem)):
    image = Image.open(filename).convert("RGB")
    original_images.append(image)
    images.append(preprocess(image))
  return original_images, images

def process_video_parallel(video, skip_frames, dest_path, num_processes, process_number):
    cap = cv2.VideoCapture(video)
    chunks_per_process = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) // (num_processes * skip_frames)
    count =  skip_frames * chunks_per_process * process_number
    print(f"worker: {process_number}, process frames {count} ~ {skip_frames * chunks_per_process * (process_number + 1)}")
    while count < skip_frames * chunks_per_process * (process_number + 1) :
        cap.set(cv2.CAP_PROP_POS_FRAMES, count)
        ret, frame = cap.read()
        if not ret:
            break
        filename =f"{dest_path}/{count}.jpg"
        cv2.imwrite(filename, frame)
        count += skip_frames  # Skip 300 frames i.e. 10 seconds for 30 fps
    cap.release()


def vid2frames(url, sampling_interval=1, ext='mp4'):
  # create folder for extracted frames - if folder exists, delete and create a new one
    dest_path = Path('frames')
    try:
        dest_path.mkdir(parents=True)
    except FileExistsError:
        shutil.rmtree(dest_path)
        dest_path.mkdir(parents=True)
    # figure out the format for download,
    # by default select 480p, if not available, choose the best format available
    # mp4
    format_id, fps = select_video_format(url, format_note='480p', ext='mp4')
    # download the video 
    video = download_video(url,format_id)
    # calculate skip_frames
    try:
        skip_frames = int(fps * sampling_interval)
    except:
        skip_frames = int(30 * sampling_interval)
    print(f'video saved at: {video}, fps:{fps}, skip_frames: {skip_frames}')
    # extract video frames at given sampling interval with multiprocessing - 
    print('extracting frames...')
    n_workers = os.cpu_count()
    with Pool(n_workers) as pool:
        pool.map(partial(process_video_parallel, video, skip_frames, dest_path, n_workers), range(n_workers))
    return dest_path


def captioned_strip(images, caption=None, times=None, rows=1):
    increased_h = 0 if caption is None else 30
    w, h = images[0].size[0], images[0].size[1]
    img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h))
    for i, img_ in enumerate(images):
        img.paste(img_, (i // rows * w, increased_h + (i % rows) * h))
    if caption is not None:
        draw = ImageDraw.Draw(img)
        font = ImageFont.truetype(
            "/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 16
        )
        font_small = ImageFont.truetype(
            "/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 12
        )
        draw.text((20, 3), caption, (255, 255, 255), font=font)
        for i,ts in enumerate(times):
          draw.text((
              (i % rows) * w + 40 , #column poistion
               i // rows * h  + 33) # row position
          , ts, 
          (255, 255, 255), font=font_small)
    return img

def run_inference(url, sampling_interval, search_query):
    path_frames = vid2frames(url,sampling_interval)
    original_images, images = read_frames(path_frames)
    image_input = torch.tensor(np.stack(images)).to(device)
    with torch.no_grad():
        image_features = model.encode_image(image_input)
        text_features = model.encode_text(clip.tokenize(search_query).to(device))
  
    image_features /= image_features.norm(dim=-1, keepdim=True)
    text_features /= text_features.norm(dim=-1, keepdim=True)
  
    similarity = (100.0 * image_features @ text_features.T)
    values, indices = similarity.topk(4, dim=0)
  
    best_frames = [original_images[ind] for ind in indices]
    times = [f'{datetime.timedelta(seconds = ind[0].item() * sampling_interval)}' for ind in indices]
    image_output = captioned_strip(best_frames,search_query, times,2)
    title = search_query
    return(title, image_output)

inputs = [gr.inputs.Textbox(label="Give us the link to your youtube video!"),
          gr.Number(5,label='sampling interval (seconds)'),
          gr.inputs.Textbox(label="What do you want to search?")]
outputs = [
    gr.outputs.HTML(label=""),  # To be used as title
    gr.outputs.Image(label=""),
]

gr.Interface(
    run_inference,
    inputs=inputs,
    outputs=outputs,
    title="It Happened One Frame",
    description='A CLIP-based app that search video frame based on text',
    examples=[
        ['https://youtu.be/v1rkzUIL8oc', 1, "James Cagney dancing down the stairs"],
        ['https://youtu.be/k4R5wZs8cxI', 1, "James Cagney smashes a grapefruit into Mae Clarke's face"]
    ]
).launch(debug=True,enable_queue=True)