Spaces:
Sleeping
Sleeping
File size: 19,474 Bytes
4f6fa80 af00c7d dfd40d7 af00c7d 4f6fa80 af00c7d 6f76d74 4f6fa80 49802ac 4f6fa80 49802ac 4f6fa80 49802ac 5976a16 5518711 4f6fa80 49802ac 4f6fa80 49802ac 4f6fa80 49802ac 4f6fa80 87a17ad 5976a16 49802ac d7bc766 49802ac f983fd2 49802ac 5807030 807a582 42800db 3d8626d 49802ac 8628c27 49802ac 4f6fa80 d7b5630 4f6fa80 482dd6b 4f6fa80 482dd6b 4f6fa80 482dd6b 4f6fa80 482dd6b cd3f01f 61bb0f4 dec1a5f 61bb0f4 978f106 07f96d6 f38f6c8 11de006 1278119 73aaeed 49802ac 73aaeed 49802ac 73aaeed 4f6fa80 5976a16 4f6fa80 1ffdca3 4f6fa80 0ac479f 4f6fa80 0ac479f 4f6fa80 0ac479f 4f6fa80 0ac479f 4f6fa80 49802ac 5976a16 0ac479f 49802ac 0ac479f a29677c 0ac479f 5976a16 49802ac 5976a16 49802ac 5976a16 49802ac 5976a16 49802ac 5976a16 49802ac 0ac479f 5976a16 0ac479f 5976a16 0ac479f 1ffdca3 0ac479f 1ffdca3 5976a16 af00c7d 5976a16 af00c7d 5976a16 d5dc2e7 5976a16 f5f4f36 5976a16 4c0a37a 50d41ee 1b24d7d 230a8ba bfa4a06 230a8ba 9684ae8 d810c61 ef9d8d1 5f0f9fd 5fdbf06 5976a16 0ac479f 11de006 4f6fa80 50a4513 4f6fa80 389538a 4f6fa80 d393a9f 6886779 835ded0 33c5832 835ded0 42580db 2e9de64 77be65a 34a837c 35d9306 0404bf5 47ec356 5e44029 0ad93ad 57090fa d56df8c 0263288 720e062 fc90c23 07f96d6 0263288 b8e03b2 5976a16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import streamlit as st
import pandas as pd
import numpy as np
import gspread
import io
import googleapiclient.discovery
from google.oauth2 import service_account
from googleapiclient.discovery import build
from googleapiclient.http import MediaIoBaseDownload
import random
import requests
import altair as alt
from PIL import Image
from io import BytesIO
logo_url = "https://www.gradina-slavu.ro/"
logo_path = "https://static.wixstatic.com/media/268e9b_fb1da1f5fc304d15beee1d2e581d5d0c~mv2.png/v1/fill/w_134,h_62,al_c,q_85,usm_0.66_1.00_0.01,enc_auto/nume.png"
# Display the logo with a black background and centered alignment
st.markdown(
f"""
<div style='background-color: rgba(128,128,128,0.4); text-align: center;'>
<a href='{logo_url}' target='_blank'>
<img src='{logo_path}' width='150'>
</a>
</div>
""",
unsafe_allow_html=True,
)
query_params = st.experimental_get_query_params()
# Get the value of a specific parameter
# Display the input value
st.title('RETETE - Selecteaza produse si retete din sidebar ori un meniu de mai jos')
st.write(' ')
sa= gspread.service_account(filename='creds.json')
# Open the Google Sheets file
sh = sa.open_by_url("https://docs.google.com/spreadsheets/d/1GZjbDLYTgRhKHtvgT868ursHYzXXmHF23w86-3KNZN0/edit#gid=489241774")
worksheet=sh.get_worksheet(0)
worksheet1=sh.get_worksheet(1)
worksheet2=sh.get_worksheet(2)
worksheet3=sh.get_worksheet(3)
rows = worksheet.get_all_values()
rows1 = worksheet1.get_all_values()
rows2 = worksheet2.get_all_values()
rows3 = worksheet3.get_all_values()
df=pd.DataFrame(rows)
df1=pd.DataFrame(rows1)
df2=pd.DataFrame(rows2)
df3=pd.DataFrame(rows3)
df2=df2.iloc[1:]
st.sidebar.markdown("---")
st.sidebar.write("In prima sectiune poti alege unul din produsele noastre! Vei primi sugestii de retete pentru el (gramajul este fixat la 100 de grame),recomandam folosirea celei de-a doua sectiuni pentru a-ti contrui meniul!")
if "input_param" in query_params:
input_value = query_params["input_param"][0]
input_value = [input_value]
input_values = [""] + df3.iloc[:, 0].tolist()
st.selectbox("Selecteaza Meniu", input_values)
elif "input_param" not in query_params:
# Get the values from the first column in df3
input_values = [""] + df3.iloc[:, 0].tolist()
input_value = st.selectbox("Selecteaza Meniu", input_values)
#st.write('Nu uita sa deselectezi optiunile din sidebar, in cazul in care meniul nu se afiseaza!', text_color="green")
st.markdown('<span style="color:green">Nu uita sa deselectezi optiunile din sidebar, in cazul in care meniul nu se afiseaza!</span>', unsafe_allow_html=True)
input_value = [input_value] if input_value else []
else:
input_value = []
options=['branza vegetala','dulceata de ardei iute','stevie','rosii cherry','rosii tocate','suc de rosii','rosii cherry uscate in ulei','pesto de busuioc','carne vegetala','pudra de dovleac','zacusca de vinete','zacusca de peste','zacusca de fasole','magiun de prune','hrean in otet','legume uscate']
options.sort()
valori_optime=['2000','280','25','50','70','20','1600','17000','50','5000','75','350','10','120','1.4','1.6','18','2','400','6','6','550','500','1000','15','350','1000','3500','2400','15','2','5','200','3500','300','2000']
selected_option = st.sidebar.radio("Selecteaza un produs", options)
st.sidebar.write("Fiecare cadru de date poate fi derulat la stânga și la dreapta pentru mai multe informații!")
st.experimental_set_query_params()
def select_random_value(df, selected_option):
# Select a random item from the list
selected_item = selected_option
# Find the corresponding values in the dataframe
matching_rows = df[df[3] == selected_item]
corresponding_values = matching_rows[0].tolist()
# Select a random value from the corresponding values
if corresponding_values:
selected_value = random.choice(corresponding_values)
return selected_value
else:
return None
reteta_selectata=select_random_value(df1,selected_option)
d2 = df2.set_index(0).to_dict('index')
d2 = {k: {k2: float(v2) for k2, v2 in v.items()} for k, v in d2.items()}
discarded_keys=['Calorii','Zaharuri','Grasimi saturate','Omega-6','Vit A','Vit C','Vit D','Vit E','Vit K','Pantothenic acid-B5','Choline-B4','Betaine','Sodiu','Cupru','Mangan','Seleniu','Fluor','Cholesterol','Phytosterols']
def select_optimized_keys(d, value, optimals):
optimals = [float(x) for x in optimals]
matching_key = [k for k, v in d.items() if k == value][0]
other_keys = [k for k in d.keys() if k != matching_key]
second_key = random.choice(other_keys)
other_keys.remove(second_key)
third_key = random.choice(other_keys)
return (second_key, third_key, matching_key)
key_options = list(df1[0].unique())
key_options = sorted(key_options)
if '' in key_options:
key_options.remove('')
st.sidebar.markdown("---")
st.sidebar.write("In a doua sectiune poti alege pana la trei retete, gramajele pentru fiecare reteta si bauturile! Vei afla nutrientii consumati in decurs de o masa sau o zi!")
st.sidebar.write("Construieste-ti meniul!")
selected_keys_option = st.sidebar.multiselect("Selecteaza pana la trei retete dorite", key_options)
if selected_keys_option:
selected_keys = list(selected_keys_option)
elif input_value and not pd.isnull(input_value):
if input_value in df3.iloc[:, 0].values:
selected_row = df3[df3.iloc[:, 0] == input_value[0]]
# Store the selected row in a different DataFrame
selected_df = selected_row.copy()
column_values = df3.iloc[:, 0].tolist()
index = column_values.index(input_value[0])
selected_keys = input_value+[df3.iloc[index, 2]]
if df3.iloc[index, 4]:
selected_keys.append(df3.iloc[index, 4])
else:
selected_keys = []
else:
selected_keys = []
# If the user hasn't selected their own keys, use the default function to select random keys
if not selected_keys:
selected_keys = select_optimized_keys(d2, reteta_selectata, valori_optime)
selected_keys = list(selected_keys)
selected_keys.reverse()
def search_values(lst, dct):
result = {}
for item in lst:
for key, value in dct.items():
if item == key:
result[item] = value
return result
# create a dictionary to hold the new dataframes
dfs = {}
# loop through the categories and create a new dataframe for each one
for reteta in selected_keys:
dfs[reteta] = df1[df1[0] == reteta]
dfs2={}
for reteta in selected_keys:
dfs2[reteta] = df1[df1[0] == reteta].iloc[:,6:]
def make_clickable(url):
return f'<a href="{url}" target="_blank">{url}</a>'
final_result=search_values(selected_keys,d2)
Finaldf=pd.DataFrame(final_result)
Finaldf=Finaldf.round(2)
new_index=['Calorii','Carbohidrati','Fibre dietetice','Zaharuri','Grasimi','Grasimi saturate','Omega-3','Omega-6','Proteina','Vit A','Vit C','Vit D','Vit E','Vit K','Thiamin-B1','Riboflavin-B2','Niacin-B3','Vitamina-B6','Folate-B9','Vitamina-B12','Pantothenic acid-B5','Choline-B4','Betaine','Calciu','Fier','Magneziu','Fosfor','Potasiu','Sodiu','Zinc','Cupru','Mangan','Seleniu','Fluor','Cholesterol','Phytosterols']
Finaldf = Finaldf.set_index(pd.Index(new_index))
def add_dict_values(d):
result = {}
keys = set().union(*(d[key].keys() for key in d))
for key in keys:
result[key] = sum(d[k].get(key, 0) for k in d)
return result
valori_meniu_d = add_dict_values(final_result)
valori_meniu = list(valori_meniu_d.values())
# Define the function to subtract two lists
def subtract_lists(list1, list2):
result = []
for i, j in zip(list1, list2):
result.append(max(0, float(i) - float(j)))
return result
# Define the default value of the slider
factors = {
"Option 1": 1,
"Option 2": 2,
"Option 3": 3
}
factor_dict = {}
for col in Finaldf.columns:
default_factor=100
slider_label = f"Alege greutatea meniului pentru {col}, in grame"
slider_key = f"{slider_label}-{default_factor}"
factor1=st.sidebar.slider(label=slider_label, key=slider_key, min_value=0, max_value=750,step=50, value=default_factor)
multiplied_column = Finaldf[col] * factor1/100
Finaldf[col] = multiplied_column
factor_dict[col] = factor1
if not selected_keys_option: # default factor is being used or dict values
if input_value and input_value[0]:
selected_dict = {}
for col_idx in range(0, len(selected_df.columns), 2):
key_col = selected_df.columns[col_idx]
value_col = selected_df.columns[col_idx + 1]
selected_dict[selected_df[key_col].values[0]] = selected_df[value_col].values[0]
for col in Finaldf.columns:
#col
if col in selected_dict:
factor1 = float(selected_dict[col])
#factor1
multiplied_column = Finaldf[col] * factor1/100
Finaldf[col] = multiplied_column
factor_dict[col] = factor1
row_sums = Finaldf.sum(axis=1)
selected_df = pd.DataFrame.from_dict(selected_dict, orient='index', columns=['Value'])
# Add " g" to the values
selected_df['Value'] = selected_df['Value'].astype(str) + ' g'
st.write('Tabel Gramaje Retete')
selected_df
Finaldf['Valori meniu'] = row_sums
else:
default_factor=350
factor1 = default_factor
row_sums = Finaldf.sum(axis=1)
factor_dict = {col: factor1 for col in Finaldf.columns}
Finaldf['Valori meniu'] = row_sums
else:
Finaldf['Valori meniu'] = Finaldf[selected_keys_option].sum(axis=1)
#selectare bautura
bautura_list = sorted(df[df.iloc[:, 1] == 'bautura'].iloc[:, 0].tolist())
selected_bautura_list = st.sidebar.multiselect("Selecteaza bauturi", bautura_list)
bauturi={}
if selected_bautura_list:
for bautura in selected_bautura_list:
filtered_df = df[(df[0] == bautura) & (df[1] == 'bautura')].reset_index(drop=True)
selected_df = filtered_df.iloc[:, 2:].astype(float)
selected_df = selected_df.apply(lambda x: x * 2.5) # multiply by 2.5
selected_df = selected_df.T.rename(columns={0: bautura})
Finaldf[bautura] = selected_df[bautura].values
bauturi[bautura] = selected_df[bautura].fillna(0).values
bauturi_df = pd.DataFrame.from_dict(bauturi, orient='index').T
bauturi_sum = bauturi_df.apply(pd.to_numeric).sum(axis=1)
Finaldf['Valori meniu portii de 100g']=valori_meniu
valori_meniu_factori=Finaldf['Valori meniu'].tolist()
if bauturi_sum.any():
Valori_ramase=subtract_lists(valori_optime,valori_meniu_factori)
Valori_ramase=Valori_ramase-bauturi_sum.values
Valori_ramase = np.maximum(Valori_ramase, 0)
bauturi_sum.index = new_index
Finaldf['Valori bauturi'] = bauturi_sum
Finaldf['Valori meniu si bauturi'] = ((Finaldf['Valori meniu'])+bauturi_sum).round(2)
else:
Valori_ramase=subtract_lists(valori_optime,valori_meniu_factori)
Valori_ramase = np.maximum(Valori_ramase, 0)
Finaldf['Valori meniu si bauturi'] = (Finaldf['Valori meniu']).round(2)
for i in range(len(selected_keys)):
dfs1 = dfs[selected_keys[i]]
dfs1 = pd.DataFrame(dfs1)
images_displayed = False
# update 'path' column with formatted URLs
for index, row in dfs1.iterrows():
image_path = row[6]
if not image_path:
continue
credentials = service_account.Credentials.from_service_account_file('creds.json')
# Build the Google Drive service
drive_service = build('drive', 'v3', credentials=credentials)
# Retrieve image content from Google Drive
request = drive_service.files().get_media(fileId=image_path)
fh = io.BytesIO()
downloader = MediaIoBaseDownload(fh, request)
done = False
while done is False:
status, done = downloader.next_chunk()
try:
image = Image.open(fh)
image = image.resize((300,300))
with st.container():
col1, col2, col3 = st.columns([1, 2, 1])
col2.image(image, caption=selected_keys[i], width=300, use_column_width=True)
images_displayed = True
if images_displayed:
dfs1 = dfs1.iloc[:,3:6]
dfs1 = dfs1.reset_index(drop=True)
indexcol = ['Ingrediente', 'Gramaj', 'Preparare']
dfs1.columns = indexcol
new_df = dfs1.copy()
if not selected_keys_option: # default factor is being used or dict values
if input_value and input_value[0]:
selected_dict = {}
for col_idx1 in range(0, len(selected_df.index)):
key = selected_df.index[col_idx1]
value = selected_df.iloc[col_idx1,0]
selected_dict[key] = value.strip(' g')
if selected_keys[i] in selected_dict:
factor2 = float(selected_dict[selected_keys[i]])/100
#st.write("Factor2:", factor2)
new_df['Gramaj'] = (((new_df['Gramaj'].astype(float)*factor2)/ new_df['Gramaj'].astype(float).sum()) * 100).round(2)
new_df['Gramaj/2Portii'] = (new_df['Gramaj'].astype(float) * 2).round(2)
new_df['Gramaj/3Portii'] = (new_df['Gramaj'].astype(float) * 3).round(2)
new_df['Gramaj/4Portii'] = (new_df['Gramaj'].astype(float) * 4).round(2)
else:
factor2 = 3.5
new_df['Gramaj'] = (((new_df['Gramaj'].astype(float)*factor2)/ new_df['Gramaj'].astype(float).sum()) * 100).round(2)
new_df['Gramaj/2Portii'] = (new_df['Gramaj'].astype(float) * 2).round(2)
new_df['Gramaj/3Portii'] = (new_df['Gramaj'].astype(float) * 3).round(2)
new_df['Gramaj/4Portii'] = (new_df['Gramaj'].astype(float) * 4).round(2)
else:
if selected_keys[i] in factor_dict:
#selected_keys[i]
factor2 = factor_dict[selected_keys[i]]/100
new_df['Gramaj'] = (((new_df['Gramaj'].astype(float)*factor2)/ new_df['Gramaj'].astype(float).sum()) * 100).round(2)
new_df['Gramaj/2Portii'] = (new_df['Gramaj'].astype(float) * 2).round(2)
new_df['Gramaj/3Portii'] = (new_df['Gramaj'].astype(float) * 3).round(2)
new_df['Gramaj/4Portii'] = (new_df['Gramaj'].astype(float) * 4).round(2)
indexcol1 = ['Ingrediente', 'Gramaj', 'Gramaj/2Portii', 'Gramaj/3Portii', 'Gramaj/4Portii', 'Preparare']
new_df = new_df.reindex(columns=indexcol1)
st.subheader(selected_keys[i])
#st.write("Dublu-click pe o celulă pentru a vedea textul complet in Preparare.")
#st.write(dfs1,index=False)
pd.set_option('display.max_colwidth', None)
new_df_excluded = new_df.drop(columns=["Preparare"])
# Display the modified DataFrame
st.dataframe(new_df_excluded)
max_length = 800
# Truncate the text in the DataFrame columns
new_df_truncated = new_df.apply(lambda x: x.str[:max_length] + '...' if x.dtype == "object" else x)
new_df_truncated = new_df_truncated.dropna(axis=0, how='all')
# Display the DataFrame with tooltips
st.table(new_df_truncated[['Preparare']])
else:
st.warning(f"No image found for {selected_keys[i]}")
except:
continue
Finaldf['Valori ramase dupa portiile selectate']=Valori_ramase.round(2)
Finaldf['Valori Optime']=valori_optime
st.write('Tabel cu valori ramase, valori totale per meniu si valori optime de consum')
st.write(Finaldf)
Valori_normate = [(float(valori_optime[i]) - Valori_ramase[i]) / float(valori_optime[i]) for i in range(len(valori_optime))]
Valori_ramase_normate=[ Valori_ramase[i] / float(valori_optime[i]) for i in range(len(valori_optime))]
chartdf = pd.DataFrame({
'Procente ramase de consumat':pd.Categorical(new_index, categories=new_index),
'max_values':Valori_normate,
'Procente': Valori_ramase_normate,
})
# Create a Categorical datatype for the x-axis
x_scale = alt.Scale(domain=new_index, zero=False)
# Define the chart using Altair
chart = alt.Chart(chartdf).mark_bar().encode(
x=alt.X('Procente ramase de consumat:O', scale=x_scale),
y='Procente',
color=alt.condition(
alt.datum.results > alt.datum.max_values,
alt.value('red'), # Set the color to red if the result is greater than the max value
alt.value('blue'), # Set the color to blue if the result is less than or equal to the max value
)
).properties(
width=alt.Step(40), # Set the width of each bar
)
# Display the chart in Streamlit
st.altair_chart(chart, use_container_width=True)
#sidebar for categories
# Define columns to display and exclude
all_columns = new_index
df.iloc[0, 2:] = new_index
# set the column names to the values in the first row
df = df.iloc[1:]
# concatenate the original column index sliced from the third column onward with the new column index
new_col_index = df.columns[:2].tolist() + new_index
# set the new column index
df.set_axis(new_col_index, axis=1, inplace=True)
df = df.set_index(0)
df.iloc[1:, 2:] = df.iloc[1:, 2:].astype(float)
st.write('Sorteaza coloanele dupa valorile ramase pentru a gasi ingrediente ce pot acoperi diferentele, valorile sunt pentru 100 de grame')
st.dataframe(df.iloc[:, 1:].astype(float), height=400)
df1.replace(r'^\s*$', np.nan, regex=True, inplace=True) # replace empty white spaces with NaN
df1.dropna(how='all', inplace=True) # drop empty rows
df1 = df1.reset_index(drop=True) # reset the index to remove null values
df1.dropna(subset=[df1.columns[0]], inplace=True) # drop any rows with null values in the first column
df1 = df1.set_index(df1.columns[0]) # set the index to the first column
df1 = df1.drop([1, 2, 5, 6], axis=1) # drop some columns
df1.columns = ['Ingrediente', 'Gramaj'] # rename columns
st.write('Cauta reteta dupa ingredient, deschide bara laterala, adauga reteta, selecteaza gramajul si descopera valorile nutritive')
col1, col2, col3 = st.columns((1, 4, 1))
# Use the middle column for displaying the dataframe
with col2:
st.dataframe(df1, height=400)
st.sidebar.markdown("---")
st.sidebar.write("Pentru a ajunge in magazin puteti da click pe banner-ul Gradina Slavu! Multumim!")
st.sidebar.markdown("---")
df=pd.DataFrame(rows)
lista=list(df[0])
#selectare ingredient
|