Spaces:
Running
Running
File size: 8,593 Bytes
ea6a7ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import torch
import torch.nn as nn
from torch.nn import functional as F
from common import get_mask_from_lengths
def compute_flow_loss(
z, log_det_W_list, log_s_list, n_elements, n_dims, mask, sigma=1.0
):
log_det_W_total = 0.0
for i, log_s in enumerate(log_s_list):
if i == 0:
log_s_total = torch.sum(log_s * mask)
if len(log_det_W_list):
log_det_W_total = log_det_W_list[i]
else:
log_s_total = log_s_total + torch.sum(log_s * mask)
if len(log_det_W_list):
log_det_W_total += log_det_W_list[i]
if len(log_det_W_list):
log_det_W_total *= n_elements
z = z * mask
prior_NLL = torch.sum(z * z) / (2 * sigma * sigma)
loss = prior_NLL - log_s_total - log_det_W_total
denom = n_elements * n_dims
loss = loss / denom
loss_prior = prior_NLL / denom
return loss, loss_prior
def compute_regression_loss(x_hat, x, mask, name=False):
x = x[:, None] if len(x.shape) == 2 else x # add channel dim
mask = mask[:, None] if len(mask.shape) == 2 else mask # add channel dim
assert len(x.shape) == len(mask.shape)
x = x * mask
x_hat = x_hat * mask
if name == "vpred":
loss = F.binary_cross_entropy_with_logits(x_hat, x, reduction="sum")
else:
loss = F.mse_loss(x_hat, x, reduction="sum")
loss = loss / mask.sum()
loss_dict = {"loss_{}".format(name): loss}
return loss_dict
class AttributePredictionLoss(torch.nn.Module):
def __init__(self, name, model_config, loss_weight, sigma=1.0):
super(AttributePredictionLoss, self).__init__()
self.name = name
self.sigma = sigma
self.model_name = model_config["name"]
self.loss_weight = loss_weight
self.n_group_size = 1
if "n_group_size" in model_config["hparams"]:
self.n_group_size = model_config["hparams"]["n_group_size"]
def forward(self, model_output, lens):
mask = get_mask_from_lengths(lens // self.n_group_size)
mask = mask[:, None].float()
loss_dict = {}
if "z" in model_output:
n_elements = lens.sum() // self.n_group_size
n_dims = model_output["z"].size(1)
loss, loss_prior = compute_flow_loss(
model_output["z"],
model_output["log_det_W_list"],
model_output["log_s_list"],
n_elements,
n_dims,
mask,
self.sigma,
)
loss_dict = {
"loss_{}".format(self.name): (loss, self.loss_weight),
"loss_prior_{}".format(self.name): (loss_prior, 0.0),
}
elif "x_hat" in model_output:
loss_dict = compute_regression_loss(
model_output["x_hat"], model_output["x"], mask, self.name
)
for k, v in loss_dict.items():
loss_dict[k] = (v, self.loss_weight)
if len(loss_dict) == 0:
raise Exception("loss not supported")
return loss_dict
class AttentionCTCLoss(torch.nn.Module):
def __init__(self, blank_logprob=-1):
super(AttentionCTCLoss, self).__init__()
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.blank_logprob = blank_logprob
self.CTCLoss = nn.CTCLoss(zero_infinity=True)
def forward(self, attn_logprob, in_lens, out_lens):
key_lens = in_lens
query_lens = out_lens
attn_logprob_padded = F.pad(
input=attn_logprob, pad=(1, 0, 0, 0, 0, 0, 0, 0), value=self.blank_logprob
)
cost_total = 0.0
for bid in range(attn_logprob.shape[0]):
target_seq = torch.arange(1, key_lens[bid] + 1).unsqueeze(0)
curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[
: query_lens[bid], :, : key_lens[bid] + 1
]
curr_logprob = self.log_softmax(curr_logprob[None])[0]
ctc_cost = self.CTCLoss(
curr_logprob,
target_seq,
input_lengths=query_lens[bid : bid + 1],
target_lengths=key_lens[bid : bid + 1],
)
cost_total += ctc_cost
cost = cost_total / attn_logprob.shape[0]
return cost
class AttentionBinarizationLoss(torch.nn.Module):
def __init__(self):
super(AttentionBinarizationLoss, self).__init__()
def forward(self, hard_attention, soft_attention):
log_sum = torch.log(soft_attention[hard_attention == 1]).sum()
return -log_sum / hard_attention.sum()
class RADTTSLoss(torch.nn.Module):
def __init__(
self,
sigma=1.0,
n_group_size=1,
dur_model_config=None,
f0_model_config=None,
energy_model_config=None,
vpred_model_config=None,
loss_weights=None,
):
super(RADTTSLoss, self).__init__()
self.sigma = sigma
self.n_group_size = n_group_size
self.loss_weights = loss_weights
self.attn_ctc_loss = AttentionCTCLoss(
blank_logprob=loss_weights.get("blank_logprob", -1)
)
self.loss_fns = {}
if dur_model_config is not None:
self.loss_fns["duration_model_outputs"] = AttributePredictionLoss(
"duration", dur_model_config, loss_weights["dur_loss_weight"]
)
if f0_model_config is not None:
self.loss_fns["f0_model_outputs"] = AttributePredictionLoss(
"f0", f0_model_config, loss_weights["f0_loss_weight"], sigma=1.0
)
if energy_model_config is not None:
self.loss_fns["energy_model_outputs"] = AttributePredictionLoss(
"energy", energy_model_config, loss_weights["energy_loss_weight"]
)
if vpred_model_config is not None:
self.loss_fns["vpred_model_outputs"] = AttributePredictionLoss(
"vpred", vpred_model_config, loss_weights["vpred_loss_weight"]
)
def forward(self, model_output, in_lens, out_lens):
loss_dict = {}
if len(model_output["z_mel"]):
n_elements = out_lens.sum() // self.n_group_size
mask = get_mask_from_lengths(out_lens // self.n_group_size)
mask = mask[:, None].float()
n_dims = model_output["z_mel"].size(1)
loss_mel, loss_prior_mel = compute_flow_loss(
model_output["z_mel"],
model_output["log_det_W_list"],
model_output["log_s_list"],
n_elements,
n_dims,
mask,
self.sigma,
)
loss_dict["loss_mel"] = (loss_mel, 1.0) # loss, weight
loss_dict["loss_prior_mel"] = (loss_prior_mel, 0.0)
ctc_cost = self.attn_ctc_loss(model_output["attn_logprob"], in_lens, out_lens)
loss_dict["loss_ctc"] = (ctc_cost, self.loss_weights["ctc_loss_weight"])
for k in model_output:
if k in self.loss_fns:
if model_output[k] is not None and len(model_output[k]) > 0:
t_lens = in_lens if "dur" in k else out_lens
mout = model_output[k]
for loss_name, v in self.loss_fns[k](mout, t_lens).items():
loss_dict[loss_name] = v
return loss_dict
|