Spaces:
Running
Running
File size: 5,330 Bytes
af58cc7 fbeef0e af58cc7 fbeef0e af58cc7 85ef7a8 af58cc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import sys
import time
from importlib.metadata import version
import torch
import gradio as gr
from transformers import MBartForConditionalGeneration, AutoTokenizer
# Config
model_name = "/home/user/app/mbart-large-50-verbalization"
concurrency_limit = 5
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model
model = MBartForConditionalGeneration.from_pretrained(
model_name,
low_cpu_mem_usage=True,
device_map=device,
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.src_lang = "uk_XX"
tokenizer.tgt_lang = "uk_XX"
examples = [
"WP: F-16 навряд чи значно змінять ситуацію на полі бою",
"Над Україною збили ракету та 7 з 8 Шахедів",
"Олімпійські ігри-2024. Розклад змагань українських спортсменів на 28 липня",
"Кампанія Гарріс менш як за тиждень зібрала понад $200 млн",
"За тиждень Нацбанк продав майже 800 мільйонів доларів на міжбанку",
"Париж-2024. День 2. Текстова трансляція",
]
title = "Normalize Text for Ukrainian"
# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors
Follow them on social networks and **contact** if you need any help or have any questions:
| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram |
| https://x.com/yehor_smoliakov at X |
| https://github.com/egorsmkv at GitHub |
| https://huggingface.co/Yehor at Hugging Face |
| or use egorsmkv@gmail.com |
""".strip()
description_head = f"""
# {title}
## Overview
This space uses https://huggingface.co/skypro1111/mbart-large-50-verbalization model.
Paste the text you want to enhance.
""".strip()
description_foot = f"""
{authors_table}
""".strip()
normalized_text_value = """
Normalized text will appear here.
Choose **an example** below the Normalize button or paste **your text**.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
""".strip()
tech_libraries = f"""
#### Libraries
- torch: {version('torch')}
- gradio: {version('gradio')}
- transformers: {version('transformers')}
""".strip()
def inference(text, progress=gr.Progress()):
if not text:
raise gr.Error("Please paste your text.")
gr.Info("Starting normalizing", duration=2)
progress(0, desc="Normalizing...")
results = []
sentences = [
text,
]
for sentence in progress.tqdm(sentences, desc="Normalizing...", unit="sentence"):
sentence = sentence.strip()
if len(sentence) == 0:
continue
t0 = time.time()
input_text = "<verbalization>:" + sentence
encoded_input = tokenizer(
input_text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024,
).to(device)
output_ids = model.generate(
**encoded_input, max_length=1024, num_beams=5, early_stopping=True
)
normalized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
if not normalized_text:
normalized_text = "-"
elapsed_time = round(time.time() - t0, 2)
normalized_text = normalized_text.strip()
results.append(
{
"sentence": sentence,
"normalized_text": normalized_text,
"elapsed_time": elapsed_time,
}
)
gr.Info("Finished!", duration=2)
result_texts = []
for result in results:
result_texts.append(f'> {result["normalized_text"]}')
result_texts.append("\n")
sum_elapsed_text = sum([result["elapsed_time"] for result in results])
result_texts.append(f"Elapsed time: {sum_elapsed_text} seconds")
return "\n".join(result_texts)
demo = gr.Blocks(
title=title,
analytics_enabled=False,
# theme="huggingface",
theme=gr.themes.Base(),
)
with demo:
gr.Markdown(description_head)
gr.Markdown("## Usage")
with gr.Row():
text = gr.Textbox(label="Text", autofocus=True, max_lines=1)
normalized_text = gr.Textbox(
label="Normalized text",
placeholder=normalized_text_value,
show_copy_button=True,
)
gr.Button("Normalize").click(
inference,
concurrency_limit=concurrency_limit,
inputs=text,
outputs=normalized_text,
)
with gr.Row():
gr.Examples(label="Choose an example", inputs=text, examples=examples)
gr.Markdown(description_foot)
gr.Markdown("### Gradio app uses:")
gr.Markdown(tech_env)
gr.Markdown(tech_libraries)
if __name__ == "__main__":
demo.queue()
demo.launch()
|