File size: 5,330 Bytes
af58cc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeef0e
af58cc7
fbeef0e
af58cc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ef7a8
af58cc7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import sys
import time

from importlib.metadata import version

import torch
import gradio as gr

from transformers import MBartForConditionalGeneration, AutoTokenizer

# Config
model_name = "/home/user/app/mbart-large-50-verbalization"
concurrency_limit = 5

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the model
model = MBartForConditionalGeneration.from_pretrained(
    model_name,
    low_cpu_mem_usage=True,
    device_map=device,
)
model.eval()

tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.src_lang = "uk_XX"
tokenizer.tgt_lang = "uk_XX"

examples = [
    "WP: F-16 навряд чи значно змінять ситуацію на полі бою",
    "Над Україною збили ракету та 7 з 8 Шахедів",
    "Олімпійські ігри-2024. Розклад змагань українських спортсменів на 28 липня",
    "Кампанія Гарріс менш як за тиждень зібрала понад $200 млн",
    "За тиждень Нацбанк продав майже 800 мільйонів доларів на міжбанку",
    "Париж-2024. День 2. Текстова трансляція",
]

title = "Normalize Text for Ukrainian"

# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors

Follow them on social networks and **contact** if you need any help or have any questions:

| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram                                                                  |
| https://x.com/yehor_smoliakov at X                                                              |
| https://github.com/egorsmkv at GitHub                                                           |
| https://huggingface.co/Yehor at Hugging Face                                                    |
| or use egorsmkv@gmail.com                                                                       |
""".strip()

description_head = f"""
# {title}

## Overview

This space uses https://huggingface.co/skypro1111/mbart-large-50-verbalization model.

Paste the text you want to enhance.
""".strip()

description_foot = f"""
{authors_table}
""".strip()

normalized_text_value = """
Normalized text will appear here.

Choose **an example** below the Normalize button or paste **your text**.
""".strip()

tech_env = f"""
#### Environment

- Python: {sys.version}
""".strip()

tech_libraries = f"""
#### Libraries

- torch: {version('torch')}
- gradio: {version('gradio')}
- transformers: {version('transformers')}
""".strip()


def inference(text, progress=gr.Progress()):
    if not text:
        raise gr.Error("Please paste your text.")

    gr.Info("Starting normalizing", duration=2)

    progress(0, desc="Normalizing...")

    results = []

    sentences = [
        text,
    ]

    for sentence in progress.tqdm(sentences, desc="Normalizing...", unit="sentence"):
        sentence = sentence.strip()

        if len(sentence) == 0:
            continue

        t0 = time.time()

        input_text = "<verbalization>:" + sentence

        encoded_input = tokenizer(
            input_text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=1024,
        ).to(device)
        output_ids = model.generate(
            **encoded_input, max_length=1024, num_beams=5, early_stopping=True
        )
        normalized_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        if not normalized_text:
            normalized_text = "-"

        elapsed_time = round(time.time() - t0, 2)

        normalized_text = normalized_text.strip()
        results.append(
            {
                "sentence": sentence,
                "normalized_text": normalized_text,
                "elapsed_time": elapsed_time,
            }
        )

    gr.Info("Finished!", duration=2)

    result_texts = []

    for result in results:
        result_texts.append(f'> {result["normalized_text"]}')
        result_texts.append("\n")

    sum_elapsed_text = sum([result["elapsed_time"] for result in results])
    result_texts.append(f"Elapsed time: {sum_elapsed_text} seconds")

    return "\n".join(result_texts)


demo = gr.Blocks(
    title=title,
    analytics_enabled=False,
    # theme="huggingface",
    theme=gr.themes.Base(),
)

with demo:
    gr.Markdown(description_head)

    gr.Markdown("## Usage")

    with gr.Row():
        text = gr.Textbox(label="Text", autofocus=True, max_lines=1)
        normalized_text = gr.Textbox(
            label="Normalized text",
            placeholder=normalized_text_value,
            show_copy_button=True,
        )

    gr.Button("Normalize").click(
        inference,
        concurrency_limit=concurrency_limit,
        inputs=text,
        outputs=normalized_text,
    )

    with gr.Row():
        gr.Examples(label="Choose an example", inputs=text, examples=examples)

    gr.Markdown(description_foot)

    gr.Markdown("### Gradio app uses:")
    gr.Markdown(tech_env)
    gr.Markdown(tech_libraries)

if __name__ == "__main__":
    demo.queue()
    demo.launch()