File size: 11,017 Bytes
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd35e3e
 
0e023c7
 
 
 
 
 
 
bd35e3e
 
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
bd35e3e
 
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd4f5a
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd35e3e
 
 
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7326b2e
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cee86a
 
 
 
 
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acd4f5a
 
 
 
 
 
 
 
 
 
 
0e023c7
acd4f5a
 
 
 
0e023c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import shutil
import subprocess

import torch
import gradio as gr
from fastapi import FastAPI
import os
from PIL import Image
import tempfile
from decord import VideoReader, cpu
from transformers import TextStreamer

from llava.constants import DEFAULT_X_TOKEN, X_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle, Conversation
from llava.serve.gradio_utils import Chat, tos_markdown, learn_more_markdown, title_markdown, block_css


def save_image_to_local(image):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
    image = Image.open(image)
    image.save(filename)
    # print(filename)
    return filename


def save_video_to_local(video_path):
    filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
    shutil.copyfile(video_path, filename)
    return filename


def generate(image1, video, textbox_in, first_run, state, state_, images_tensor):
    flag = 1
    if not textbox_in:
        if len(state_.messages) > 0:
            textbox_in = state_.messages[-1][1]
            state_.messages.pop(-1)
            flag = 0
        else:
            return "Please enter instruction"

    image1 = image1 if image1 else "none"
    video = video if video else "none"
    # assert not (os.path.exists(image1) and os.path.exists(video))

    if type(state) is not Conversation:
        state = conv_templates[conv_mode].copy()
        state_ = conv_templates[conv_mode].copy()
        images_tensor = [[], []]

    first_run = False if len(state.messages) > 0 else True

    text_en_in = textbox_in.replace("picture", "image")

    # images_tensor = [[], []]
    image_processor = handler.image_processor
    if os.path.exists(image1) and not os.path.exists(video):
        tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['image']
        print(torch.cuda.memory_allocated())
        print(torch.cuda.max_memory_allocated())
    video_processor = handler.video_processor
    if not os.path.exists(image1) and os.path.exists(video):
        tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['video']
        print(torch.cuda.memory_allocated())
        print(torch.cuda.max_memory_allocated())
    if os.path.exists(image1) and os.path.exists(video):
        tensor = video_processor(video, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['video']
        
        
        tensor = image_processor.preprocess(image1, return_tensors='pt')['pixel_values'][0]
        # print(tensor.shape)
        tensor = tensor.to(handler.model.device, dtype=dtype)
        images_tensor[0] = images_tensor[0] + [tensor]
        images_tensor[1] = images_tensor[1] + ['image']
        print(torch.cuda.memory_allocated())
        print(torch.cuda.max_memory_allocated())
        


    if os.path.exists(image1) and not os.path.exists(video):
        text_en_in = DEFAULT_X_TOKEN['IMAGE'] + '\n' + text_en_in
    if not os.path.exists(image1) and os.path.exists(video):
        text_en_in = DEFAULT_X_TOKEN['VIDEO'] + '\n' + text_en_in
    if os.path.exists(image1) and os.path.exists(video):
        text_en_in = DEFAULT_X_TOKEN['VIDEO'] + '\n' + text_en_in + '\n' + DEFAULT_X_TOKEN['IMAGE']

    text_en_out, state_ = handler.generate(images_tensor, text_en_in, first_run=first_run, state=state_)
    state_.messages[-1] = (state_.roles[1], text_en_out)

    text_en_out = text_en_out.split('#')[0]
    textbox_out = text_en_out

    show_images = ""
    if os.path.exists(image1):
        filename = save_image_to_local(image1)
        show_images += f'<img src="./file={filename}" style="display: inline-block;width: 250px;max-height: 400px;">'
    if os.path.exists(video):
        filename = save_video_to_local(video)
        show_images += f'<video controls playsinline width="500" style="display: inline-block;"  src="./file={filename}"></video>'

    if flag:
        state.append_message(state.roles[0], textbox_in + "\n" + show_images)
    state.append_message(state.roles[1], textbox_out)
    torch.cuda.empty_cache()
    return (state, state_, state.to_gradio_chatbot(), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True))

def regenerate(state, state_):
    state.messages.pop(-1)
    state_.messages.pop(-1)
    if len(state.messages) > 0:
        return state, state_, state.to_gradio_chatbot(), False
    return (state, state_, state.to_gradio_chatbot(), True)


def clear_history(state, state_):
    state = conv_templates[conv_mode].copy()
    state_ = conv_templates[conv_mode].copy()
    return (gr.update(value=None, interactive=True),
        gr.update(value=None, interactive=True),\
        gr.update(value=None, interactive=True),\
        True, state, state_, state.to_gradio_chatbot(), [[], []])



conv_mode = "llava_v1"
model_path = 'LanguageBind/Video-LLaVA-7B'
device = 'cuda'
load_8bit = False
load_4bit = True
dtype = torch.float16
handler = Chat(model_path, conv_mode=conv_mode, load_8bit=load_8bit, load_4bit=load_8bit, device=device)
# handler.model.to(dtype=dtype)
if not os.path.exists("temp"):
    os.makedirs("temp")

print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())

app = FastAPI()

textbox = gr.Textbox(
        show_label=False, placeholder="Enter text and press ENTER", container=False
    )
with gr.Blocks(title='Video-LLaVAπŸš€', theme=gr.themes.Default(), css=block_css) as demo:
    gr.Markdown(title_markdown)
    state = gr.State()
    state_ = gr.State()
    first_run = gr.State()
    images_tensor = gr.State()

    with gr.Row():
        with gr.Column(scale=3):
            image1 = gr.Image(label="Input Image", type="filepath")
            video = gr.Video(label="Input Video")

            cur_dir = os.path.dirname(os.path.abspath(__file__))
            gr.Examples(
                examples=[
                    [
                        f"{cur_dir}/examples/extreme_ironing.jpg",
                        "What is unusual about this image?",
                    ],
                    [
                        f"{cur_dir}/examples/waterview.jpg",
                        "What are the things I should be cautious about when I visit here?",
                    ],
                    [
                        f"{cur_dir}/examples/desert.jpg",
                        "If there are factual errors in the questions, point it out; if not, proceed answering the question. What’s happening in the desert?",
                    ],
                ],
                inputs=[image1, textbox],
            )

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Video-LLaVA", bubble_full_width=True).style(height=750)
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=50):
                    submit_btn = gr.Button(
                        value="Send", variant="primary", interactive=True
                    )
            with gr.Row(elem_id="buttons") as button_row:
                upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=True)
                downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=True)
                flag_btn = gr.Button(value="⚠️  Flag", interactive=True)
                # stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
                regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=True)
                clear_btn = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=True)

    with gr.Row():
        gr.Examples(
            examples=[
                [
                    f"{cur_dir}/examples/sample_img_8.png",
                    f"{cur_dir}/examples/sample_demo_8.mp4",
                    "Are the image and the video depicting the same place?",
                ],
                [
                    f"{cur_dir}/examples/sample_img_22.png",
                    f"{cur_dir}/examples/sample_demo_22.mp4",
                    "Are the instruments in the pictures used in the video?",
                ],
                [
                    f"{cur_dir}/examples/sample_img_13.png",
                    f"{cur_dir}/examples/sample_demo_13.mp4",
                    "Does the flag in the image appear in the video?",
                ],
            ],
            inputs=[image1, video, textbox],
        )
        gr.Examples(
            examples=[
                [
                    f"{cur_dir}/examples/sample_demo_1.mp4",
                    "Why is this video funny?",
                ],
                [
                    f"{cur_dir}/examples/sample_demo_7.mp4",
                    "Create a short fairy tale with a moral lesson inspired by the video.",
                ],
                [
                    f"{cur_dir}/examples/sample_demo_8.mp4",
                    "Where is this video taken from? What place/landmark is shown in the video?",
                ],
                [
                    f"{cur_dir}/examples/sample_demo_12.mp4",
                    "What does the woman use to split the logs and how does she do it?",
                ],
                [
                    f"{cur_dir}/examples/sample_demo_18.mp4",
                    "Describe the video in detail.",
                ],
                [
                    f"{cur_dir}/examples/sample_demo_22.mp4",
                    "Describe the activity in the video.",
                ],
            ],
            inputs=[video, textbox],
        )
    gr.Markdown(tos_markdown)
    gr.Markdown(learn_more_markdown)

    submit_btn.click(generate, [image1, video, textbox, first_run, state, state_, images_tensor],
                     [state, state_, chatbot, first_run, textbox, images_tensor, image1, video])

    regenerate_btn.click(regenerate, [state, state_], [state, state_, chatbot, first_run]).then(
        generate, [image1, video, textbox, first_run, state, state_, images_tensor], [state, state_, chatbot, first_run, textbox, images_tensor, image1, video])

    clear_btn.click(clear_history, [state, state_],
                    [image1, video, textbox, first_run, state, state_, chatbot, images_tensor])

# app = gr.mount_gradio_app(app, demo, path="/")
demo.launch()


# uvicorn llava.serve.gradio_web_server:app