File size: 7,244 Bytes
687ef3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import os\n",
    "from tqdm import tqdm\n",
    "from S1_CNN_Model import CNN_Model\n",
    "from S2_TimberDataset import TimberDataset, compile_image_df\n",
    "from S3_intermediateDataset import build_intermediate_dataset_if_not_exists, intermediate_dataset\n",
    "\n",
    "from torch.utils.data import DataLoader\n",
    "from torchvision import transforms"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "test_df, _ = compile_image_df(\"data/image/test\", split_at=1.0)\n",
    "\n",
    "def listdir_full(path: str) -> list[str]:\n",
    "    return [f\"{path}/{p}\" for p in os.listdir(path)]\n",
    "\n",
    "transform = transforms.Compose([\n",
    "    transforms.Resize((320,320)),\n",
    "    transforms.ToTensor(),\n",
    "])\n",
    "\n",
    "test_loader = DataLoader(TimberDataset(test_df, is_train=True,transform=transform),\n",
    "                            shuffle=True,\n",
    "                            batch_size=12)\n",
    "\n",
    "build_intermediate_dataset_if_not_exists(lambda x:x, \"test\", test_loader)\n",
    "test_loader = intermediate_dataset(\"test\") "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 17/17 [09:00<00:00, 31.82s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[('ckpt/model_37.pt', 92.36111111111111), ('ckpt/model_36.pt', 91.39957264957265), ('ckpt/model.pt', 90.11752136752136), ('ckpt/model_23.pt', 90.11752136752136), ('ckpt/model_27.pt', 90.03739316239316), ('ckpt/model_19.pt', 89.95726495726495), ('ckpt/model_17.pt', 88.56837606837607), ('ckpt/model_16.pt', 87.79380341880342), ('ckpt/model_15.pt', 85.79059829059828), ('ckpt/model_13.pt', 85.04273504273505), ('ckpt/model_11.pt', 85.01602564102564), ('ckpt/model_14.pt', 84.58867521367522), ('ckpt/model_7.pt', 79.8076923076923), ('ckpt/model_6.pt', 79.27350427350427), ('ckpt/model_5.pt', 75.58760683760684), ('ckpt/model_4.pt', 70.86004273504274), ('ckpt/model_3.pt', 63.67521367521367)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "def evaluate_model(model: CNN_Model):\n",
    "    n_correct = 0\n",
    "    n_samples = 0\n",
    "\n",
    "    with torch.no_grad(): \n",
    "        with tqdm(test_loader, position=1, leave=False) as pb:\n",
    "            for images, labels in pb:\n",
    "                images = images.reshape(images.shape[1:])\n",
    "                labels = labels.reshape(labels.shape[1:])\n",
    "\n",
    "                x = model.forward(images)\n",
    "                _, predictions = torch.max(x,1)\n",
    "                \n",
    "                n_samples += labels.shape[0]\n",
    "                n_correct += (predictions == labels).sum().item()\n",
    "\n",
    "                pb.set_description(f\"{n_correct}/{n_samples} correct predictions ({n_correct/n_samples*100 :.2f}%)\")\n",
    "\n",
    "    return n_correct/n_samples*100\n",
    "\n",
    "accuracies = [(model_path, evaluate_model(torch.load(model_path))) for model_path in tqdm(listdir_full(\"ckpt\"), position=0)]\n",
    "accuracies.sort(key = lambda x : x[1], reverse=True)\n",
    "accuracies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "test_loader = DataLoader(TimberDataset(test_df, is_train=True,transform=transform),\n",
    "                            batch_size=12)\n",
    "\n",
    "build_intermediate_dataset_if_not_exists(lambda x:x, \"test_full\", test_loader)\n",
    "test_loader = intermediate_dataset(\"test_full\") "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 17/17 [08:32<00:00, 30.14s/it]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[('ckpt/model_37.pt', 97.11538461538461), ('ckpt/model_23.pt', 96.15384615384616), ('ckpt/model_36.pt', 96.15384615384616), ('ckpt/model_27.pt', 95.51282051282051), ('ckpt/model_19.pt', 95.1923076923077), ('ckpt/model.pt', 94.23076923076923), ('ckpt/model_17.pt', 94.23076923076923), ('ckpt/model_16.pt', 93.26923076923077), ('ckpt/model_15.pt', 92.94871794871796), ('ckpt/model_11.pt', 91.98717948717949), ('ckpt/model_13.pt', 91.34615384615384), ('ckpt/model_14.pt', 91.02564102564102), ('ckpt/model_7.pt', 88.78205128205127), ('ckpt/model_6.pt', 86.85897435897436), ('ckpt/model_5.pt', 82.05128205128204), ('ckpt/model_4.pt', 78.84615384615384), ('ckpt/model_3.pt', 70.83333333333334)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "def full_images_evaluation(model: CNN_Model):\n",
    "    model.image_size = (320,320)\n",
    "    n_correct = 0\n",
    "    n_samples = 0\n",
    "\n",
    "    with torch.no_grad(): \n",
    "        with tqdm(test_loader, position=1, leave = False) as pb:\n",
    "            for images, labels in pb:\n",
    "                images = images.reshape(images.shape[1:])\n",
    "                labels = labels.reshape(labels.shape[1:])\n",
    "\n",
    "                assert torch.all(labels == labels[0]).item()\n",
    "                label = labels[0]\n",
    "\n",
    "                x = model.forward(images)\n",
    "                _, preds = torch.max(x,1)\n",
    "                pred = torch.mode(preds,0).values\n",
    "                \n",
    "                n_samples += 1\n",
    "                n_correct += (pred == label).item()\n",
    "\n",
    "                pb.set_description(f\"{n_correct}/{n_samples} correct predictions ({n_correct/n_samples*100 :.2f}%)\")\n",
    "\n",
    "    return n_correct/n_samples*100\n",
    "\n",
    "full_accuracies = [(model_path, full_images_evaluation(torch.load(model_path)))\n",
    "                   for model_path in tqdm(listdir_full(\"ckpt\"), position=0)]\n",
    "full_accuracies.sort(key = lambda x : x[1], reverse=True)\n",
    "print(full_accuracies)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<zip at 0x286ec807c00>"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "fyp",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}