File size: 35,191 Bytes
7dbe662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
import functools
from dataclasses import dataclass
import PIL
from PIL.Image import Image
import numpy as np
from typing import Union, Tuple, List, Optional, Callable
from sklearn.decomposition import PCA
import supervision as sv

import torch
from torch import nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as T

from segment_anything.utils.transforms import ResizeLongestSide
from segment_anything.predictor import preprocess, postprocess_masks
from segment_anything import build_sam, load_mobile_sam

from sam_extension.utils import add_prompts_tag, get_empty_detections, transform_coords
from sam_extension.pipeline.base import Pipeline, Output
from sam_extension.pipeline.groundingdino import GroundingDinoPipeline
from sam_extension.distillation_models.sam import load_distillation_sam, load_sam
from sam_extension.distillation_models import *

ORIGINAL_SAM_IMG_SIZE: int = 1024
PIXEL_MEAN = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
PIXEL_STD = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
PREPROCESS = functools.partial(preprocess, ORIGINAL_SAM_IMG_SIZE, PIXEL_MEAN, PIXEL_STD)
POSTPROCESS_MASKS = functools.partial(postprocess_masks, ORIGINAL_SAM_IMG_SIZE)

@dataclass(repr=True)
class SAMEncoderOutput(Output):
    features: torch.Tensor
    interm_features: List[torch.Tensor]
    original_size: Tuple
    input_size: Tuple

@dataclass(repr=True)
class SAMEncoderProcesImgOutput(Output):
    input_image: torch.Tensor
    original_size: Tuple
    input_size: Tuple

@dataclass(repr=True)
class SAMDecoderPredictOutput(Output):
    masks_np: np.ndarray
    iou_predictions_np: np.ndarray
    low_res_masks_np: np.ndarray

@dataclass(repr=True)
class SAMDecoderPredictTorchOutput(Output):
    masks: torch.Tensor
    iou_predictions: torch.Tensor
    low_res_masks: torch.Tensor


class SAMEncoderPipeline(Pipeline):
    def __init__(self,
                 encoder: nn.Module,
                 input_img_size: Tuple,
                 multi_output: bool,
                 preprocess: Callable,
                 transform: ResizeLongestSide,
                 device: str,
                 *args,
                 **kwargs):
        super(SAMEncoderPipeline, self).__init__(*args, **kwargs)
        self.encoder = encoder
        self.input_img_size = input_img_size
        self.multi_output = multi_output
        self.preprocess = preprocess
        self.transform = transform
        self.device = device
    @classmethod
    def from_pretrained(cls, ckpt_path, device='cuda', *args, **kwargs):
        if 'sam_version' not in kwargs.keys():
            sam_version = 'sam'
        else:
            sam_version = kwargs['sam_version']
        sam = load_sam(ckpt_path, sam_version, device)
        encoder = sam.image_encoder
        encoder_type = encoder.__class__.__name__
        if encoder_type in ['TinyViT', 'FasterTinyViT', 'SAMEncoderViT', 'DINOSAMViT', 'FlashVisionTransformer']:
            multi_output = False
            if encoder_type in ['FasterTinyViT', 'SAMEncoderViT', 'DINOSAMViT', 'FlashVisionTransformer']:
                input_img_size = (encoder.img_size, encoder.img_size)
                if encoder_type == 'DINOSAMViT':
                    encoder = encoder.dino
            else:
                input_img_size = (ORIGINAL_SAM_IMG_SIZE, ORIGINAL_SAM_IMG_SIZE)
        else:
            multi_output = True
            input_img_size = (ORIGINAL_SAM_IMG_SIZE, ORIGINAL_SAM_IMG_SIZE)
        if sam.adaptor is None:
            transform = ResizeLongestSide(ORIGINAL_SAM_IMG_SIZE)
            preprocess_ = functools.partial(preprocess, ORIGINAL_SAM_IMG_SIZE, PIXEL_MEAN.to(device), PIXEL_STD.to(device))
        else:
            transform = T.Compose([
                T.Resize(input_img_size),
                T.ToTensor(),
                T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
            ])
            preprocess_ = None
        pipeline = cls(encoder=encoder,
                       input_img_size=input_img_size,
                       multi_output=multi_output,
                       preprocess=preprocess_,
                       transform=transform,
                       device=device)
        del sam, encoder
        torch.cuda.empty_cache()
        return pipeline

    def process_img(self, img: Union[Image, np.ndarray]) -> SAMEncoderProcesImgOutput:
        if self.preprocess is not None:
            if isinstance(img, Image):
                img = np.uint8(img)
            input_image = self.transform.apply_image(img)
            input_image_torch = torch.as_tensor(input_image, device=self.device)
            input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
            original_size = tuple(img.shape[:2])
            input_size = tuple(input_image_torch.shape[-2:])
            input_image = F.interpolate(self.preprocess(input_image_torch), size=self.input_img_size, mode='bilinear')
        else:
            if isinstance(img, np.ndarray):
                img = PIL.Image.fromarray(img)
            original_size = (img.size[1], img.size[0])
            if original_size[0] > original_size[1]:
                input_h = 1024
                input_w = int((1024 / original_size[0]) * original_size[1])
            else:
                input_w = 1024
                input_h = int((1024 / original_size[1]) * original_size[0])
            input_size = (input_h, input_w)
            input_image = self.transform(img)[None, ...].to(self.device)
        return SAMEncoderProcesImgOutput(input_image, original_size, input_size)
    @torch.no_grad()
    def get_visual_feature(self, x: Union[torch.Tensor, Image, np.ndarray]=None, **kwargs):
        pca_rgb = PCA(n_components=3)
        if 'sam_feature' in kwargs.keys() and 'original_size' in kwargs.keys():
            sam_feature = kwargs['sam_feature']
            original_size = kwargs['original_size']
        else:
            assert x is not None, 'please give x type Union[torch.Tensor, Image, np.ndarray] !'
            sam_encoder_output = self.forward(x, **kwargs)
            sam_feature = sam_encoder_output.features
            original_size = sam_encoder_output.original_size
            assert original_size is not None, 'please give original_size!'
        sam_feature = F.interpolate(sam_feature, size=original_size, mode='bilinear').permute(0, 2, 3, 1)
        b, h, w, c = sam_feature.shape
        sam_feature = sam_feature.view(-1, c).cpu().numpy()
        sam_feature = pca_rgb.fit_transform(sam_feature)
        sam_feature = torch.Tensor(sam_feature.reshape(h, w, 3))
        min_f, _ = sam_feature.min(-1)
        max_f, _ = sam_feature.max(-1)
        sam_feature = (sam_feature - min_f[..., None]) / (max_f[..., None] - min_f[..., None])
        sam_feature = sam_feature.cpu().numpy()
        sam_feature_image = PIL.Image.fromarray((sam_feature * 255).astype(np.uint8))
        return sam_feature_image
    def forward(self, x: Union[torch.Tensor, Image, np.ndarray], **kwargs) -> SAMEncoderOutput:
        if isinstance(x, (Image, np.ndarray)):
            process_img_output = self.process_img(x)
            x = process_img_output.input_image
            original_size = process_img_output.original_size
            input_size = process_img_output.input_size
        else:
            original_size = kwargs.pop('original_size') if 'original_size' in kwargs.keys() else None
            input_size = x.shape[-2:]
        with torch.no_grad():
            if self.multi_output:
                features, interm_features = self.encoder(x, **kwargs)
            else:
                features = self.encoder(x, **kwargs)
                if self.encoder.__class__.__name__ == 'DINO':
                    features = features.permute(0, 3, 1, 2)
                interm_features = None
        return SAMEncoderOutput(features, interm_features, original_size, input_size)

class SAMDecoderPipeline(Pipeline):
    def __init__(self,
                 prompt_encoder: nn.Module,
                 mask_decoder: nn.Module,
                 adaptor: nn.Module,
                 mask_threshold: float,
                 transform: ResizeLongestSide,
                 postprocess_masks: Callable,
                 img_size: int,
                 device: str,
                 *args,
                 **kwargs):
        super(SAMDecoderPipeline, self).__init__(*args, **kwargs)
        self.prompt_encoder = prompt_encoder
        self.mask_decoder = mask_decoder
        self.adaptor = adaptor
        self.mask_threshold = mask_threshold
        self.transform = transform
        self.postprocess_masks = postprocess_masks
        self.img_size = img_size
        self.device = device
    @classmethod
    def from_pretrained(cls, ckpt_path, device='cuda', *args, **kwargs):
        if 'sam_version' not in kwargs.keys():
            sam_version = 'sam'
        else:
            sam_version = kwargs['sam_version']
        sam = load_sam(ckpt_path, sam_version, device)
        if sam.image_encoder.__class__.__name__ == 'DINOSAMViT':
            adaptor = sam.image_encoder.adaptor
        elif sam.adaptor is not None:
            adaptor = sam.adaptor
        else:
            adaptor = None
        img_size = sam.image_encoder.img_size
        prompt_encoder = sam.prompt_encoder
        mask_decoder = sam.mask_decoder
        transform = ResizeLongestSide(ORIGINAL_SAM_IMG_SIZE)
        pipeline = cls(prompt_encoder=prompt_encoder,
                       mask_decoder=mask_decoder,
                       adaptor=adaptor,
                       mask_threshold=sam.mask_threshold,
                       transform=transform,
                       postprocess_masks=POSTPROCESS_MASKS,
                       img_size=img_size,
                       device=device)
        del sam, prompt_encoder, mask_decoder
        torch.cuda.empty_cache()
        return pipeline
    def visualize_prompt(self,
                         img: Union[Image, np.ndarray],
                         des_img: Union[Image, np.ndarray] = None,
                         point_labels: Union[List[int], np.ndarray] = None,
                         point_coords: Union[List[List[int]], np.ndarray] = None,
                         boxes: Union[List[List[int]], np.ndarray] = None,
                         pil: bool = False
                         ) -> Union[Image, np.ndarray]:
        if des_img is not None:
            if isinstance(des_img, np.ndarray):
                des_shape = tuple(des_img.shape[:2])

            else:
                des_shape = (des_img.size[1], des_img.size[0])
            src_shape = (img.size[1], img.size[0])
            point_coords, boxes = transform_coords(src_shape, des_shape, point_coords, boxes)
            return add_prompts_tag(des_img, point_labels, point_coords, boxes, pil)
        else:
            return add_prompts_tag(img, point_labels, point_coords, boxes, pil)

    def visualize_results(self,
                          img: Union[Image, np.ndarray],
                          des_img: Union[Image, np.ndarray] = None,
                          sam_encoder_output: Optional[SAMEncoderOutput] = None,
                          features: Optional[torch.Tensor] = None,
                          interm_features: Optional[List[torch.Tensor]] = None,
                          original_size: Optional[Tuple] = None,
                          input_size: Optional[Tuple] = None,
                          point_coords: Optional[np.ndarray] = None,
                          point_labels: Optional[np.ndarray] = None,
                          boxes: Optional[np.ndarray] = None,
                          texts: Optional[List] = None,
                          grounding_dino_pipeline: GroundingDinoPipeline = None,
                          box_threshold: float = 0.25,
                          text_threshold: float = 0.25,
                          nms_threshold: float = 0.8,
                          detections: Optional[sv.Detections] = None,
                          multimask_output: bool = True,
                          visualize_promts: bool = True,
                          pil: bool = False):
        if isinstance(img, Image):
            img = np.uint8(img)
        if des_img is not None:
            if isinstance(des_img, np.ndarray):
                des_shape = tuple(des_img.shape[:2])
            else:
                des_shape = (des_img.size[1], des_img.size[0])
            src_shape = img.shape[:2]
            if point_coords is not None or boxes is not None:
                des_point_coords, des_boxes = transform_coords(src_shape, des_shape, point_coords, boxes)
            else:
                des_point_coords = None
                des_boxes = None
        else:
            des_point_coords = None
            des_boxes = None
            src_shape = None
            des_shape = None
        detections = get_empty_detections() if detections is None else detections
        mask_annotator = sv.MaskAnnotator()
        result_list = []
        mask_result_list = []
        mask_list = []
        if boxes is None and point_coords is None and point_labels is None and texts is None or \
                (point_coords is not None and point_labels is not None and point_coords.shape[0] != point_labels.shape[0]):
            print('no prompt given!')
            result_list.append(img)
            return result_list
        # if boxes is not None and point_coords is not None and point_labels is not None:
        #     multimask_output = False
        def get_annotated_image(mask_annotator,
                                detections,
                                img,
                                point_labels=None,
                                point_coords=None,
                                boxes=None,
                                visualize_promts=True,
                                pil=False):
            annotated_image = mask_annotator.annotate(scene=img.copy(), detections=detections)
            if visualize_promts:
                annotated_image = add_prompts_tag(annotated_image, point_labels, point_coords, boxes=boxes, pil=pil)
            else:
                if pil:
                    annotated_image = PIL.Image.fromarray(annotated_image)
            return annotated_image
        def get_masked_image(img,
                             masks,
                             pil=True):
            masked_image_list = []
            for i in range(masks.shape[0]):
                object_rgb = img * (masks[i].reshape(img.shape[0], img.shape[1], 1))
                object_rgb = object_rgb.astype(np.uint8)
                bkgd_mask = np.where(object_rgb == 0, 1, 0)
                bkgd_mask *= 255
                bkgd_mask = bkgd_mask.astype(np.uint8)
                object_rgb += bkgd_mask
                if pil:
                    masked_image_list.append(PIL.Image.fromarray(object_rgb))
                else:
                    masked_image_list.append(object_rgb)
            return masked_image_list
        def interpolate_mask(mask_np, des_shape):
            mask_tensor = torch.tensor(mask_np, dtype=torch.float32).unsqueeze(0)
            mask_interpolate = F.interpolate(mask_tensor, size=des_shape, mode='bilinear')
            mask_interpolate = (mask_interpolate+0.5).long()
            mask_np = mask_interpolate.squeeze(0).numpy().astype(bool)
            return mask_np

        if point_coords is not None and point_labels is not None:
            
            if src_shape is not None:
                point_result = self.forward(sam_encoder_output,
                                            features,
                                            interm_features,
                                            original_size,
                                            input_size,
                                            des_point_coords,
                                            point_labels)
                masks_np = interpolate_mask(point_result.masks_np, src_shape)
            else:
                point_result = self.forward(sam_encoder_output,
                                            features,
                                            interm_features,
                                            original_size,
                                            input_size,
                                            point_coords,
                                            point_labels)
                masks_np = point_result.masks_np
            if multimask_output:
                for i in range(masks_np.shape[0]):
                    detections.mask = masks_np[i][None, ...]
                    mask_list.append(masks_np[i])
                    result_list.append(get_annotated_image(mask_annotator,
                                                           detections,
                                                           img,
                                                           point_labels=point_labels,
                                                           point_coords=point_coords,
                                                           visualize_promts=visualize_promts,
                                                           pil=pil))
                    mask_result_list += get_masked_image(img,
                                                         detections.mask,
                                                         pil=pil)
            else:
                index = np.argmax(point_result.iou_predictions_np)
                detections.mask = masks_np[index][None, ...]
                mask_list.append(masks_np[index])
                result_list.append(get_annotated_image(mask_annotator,
                                                       detections,
                                                       img,
                                                       point_labels=point_labels,
                                                       point_coords=point_coords,
                                                       visualize_promts=visualize_promts,
                                                       pil=pil))
                mask_result_list += get_masked_image(img,
                                                     detections.mask,
                                                     pil=pil)

        if boxes is not None:
            result_masks = []
            if src_shape is not None:
                boxes_ = des_boxes
            else:
                boxes_ = boxes
            if boxes_.shape[0] > 1:
                for i in range(len(boxes)):
                    box_result = self.forward(sam_encoder_output,
                                            features,
                                            interm_features,
                                            original_size,
                                            input_size,
                                            box=boxes_[i])
                    index = np.argmax(box_result.iou_predictions_np)
                    result_masks.append(box_result.masks_np[index])
                mask = np.array(result_masks)
                if src_shape is not None:
                    masks_np = interpolate_mask(mask, src_shape)
                else:
                    masks_np = mask
                mask_list.append(masks_np)
                detections.mask = masks_np
                result_list.append(get_annotated_image(mask_annotator,
                                                       detections,
                                                       img,
                                                       boxes=boxes,
                                                       visualize_promts=visualize_promts,
                                                       pil=pil))
                mask_result_list += get_masked_image(img,
                                                     detections.mask,
                                                     pil=pil)
            else:
                box_result = self.forward(sam_encoder_output,
                                          features,
                                          interm_features,
                                          original_size,
                                          input_size,
                                          box=boxes_)
                if src_shape is not None:
                    masks_np = interpolate_mask(box_result.masks_np, src_shape)
                else:
                    masks_np = box_result.masks_np

                if multimask_output:
                    for i in range(masks_np.shape[0]):
                        detections.mask = masks_np[i][None, ...]
                        mask_list.append(masks_np[i])
                        result_list.append(get_annotated_image(mask_annotator,
                                                               detections,
                                                               img,
                                                               boxes=boxes,
                                                               visualize_promts=visualize_promts,
                                                               pil=pil))
                        mask_result_list += get_masked_image(img,
                                                             detections.mask,
                                                             pil=pil)
                else:
                    index = np.argmax(box_result.iou_predictions_np)
                    detections.mask = masks_np[index][None, ...]
                    mask_list.append(masks_np[index])
                    result_list.append(get_annotated_image(mask_annotator, detections, img, boxes=boxes, pil=pil))
                    mask_result_list += get_masked_image(img,
                                                         detections.mask,
                                                         pil=pil)

        if texts is not None and grounding_dino_pipeline is not None:
            detections = grounding_dino_pipeline(img[:, :, ::-1], texts, box_threshold, text_threshold)
            box_annotator = sv.BoxAnnotator()
            nms_idx = torchvision.ops.nms(
                torch.from_numpy(detections.xyxy),
                torch.from_numpy(detections.confidence),
                nms_threshold
            ).numpy().tolist()

            detections.xyxy = detections.xyxy[nms_idx]
            detections.confidence = detections.confidence[nms_idx]
            detections.class_id = detections.class_id[nms_idx]
            labels = [
                f"{texts[class_id]} {confidence:0.2f}"
                for _, _, confidence, class_id, _
                in detections]
            result_masks = []
            if src_shape is not None:
                _, boxes_ = transform_coords(src_shape, des_shape, boxes=detections.xyxy)
            else:
                boxes_ = detections.xyxy
            for box in boxes_:
                box_result = self.forward(sam_encoder_output,
                                          features,
                                          interm_features,
                                          original_size,
                                          input_size,
                                          box=box)
                index = np.argmax(box_result.iou_predictions_np)
                result_masks.append(box_result.masks_np[index])
            mask = np.array(result_masks)
            if src_shape is not None:
                detections.mask = interpolate_mask(mask, src_shape)
            else:
                detections.mask = mask
            for i in range(detections.mask.shape[0]):
                mask_list.append(detections.mask[i, ...])
            if visualize_promts:
                annotated_image = mask_annotator.annotate(scene=img[:, :, ::-1].copy(), detections=detections)
                annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections, labels=labels)
            else:
                annotated_image = mask_annotator.annotate(scene=img[:, :, ::-1].copy(), detections=detections)

            if pil:
                result_list.append(PIL.Image.fromarray(annotated_image[:, :, ::-1]))
            else:
                result_list.append(annotated_image[:, :, ::-1])
            mask_result_list += get_masked_image(img,
                                                 detections.mask,
                                                 pil=pil)

        return result_list, mask_result_list, mask_list

    def predict(
            self,
            features: torch.Tensor,
            interm_features: List[torch.Tensor],
            original_size: Tuple,
            input_size: Tuple,
            point_coords: Optional[np.ndarray] = None,
            point_labels: Optional[np.ndarray] = None,
            box: Optional[np.ndarray] = None,
            mask_input: Optional[np.ndarray] = None,
            multimask_output: bool = True,
            return_logits: bool = False,
            hq_token_only: bool = False,
    ) -> SAMDecoderPredictOutput:
        """
        Predict masks for the given input prompts, using the currently set image.

        Arguments:
          point_coords (np.ndarray or None): A Nx2 array of point prompts to the
            model. Each point is in (X,Y) in pixels.
          point_labels (np.ndarray or None): A length N array of labels for the
            point prompts. 1 indicates a foreground point and 0 indicates a
            background point.
          box (np.ndarray or None): A length 4 array given a box prompt to the
            model, in XYXY format.
          mask_input (np.ndarray): A low resolution mask input to the model, typically
            coming from a previous prediction iteration. Has form 1xHxW, where
            for SAM, H=W=256.
          multimask_output (bool): If true, the model will return three masks.
            For ambiguous input prompts (such as a single click), this will often
            produce better masks than a single prediction. If only a single
            mask is needed, the model's predicted quality score can be used
            to select the best mask. For non-ambiguous prompts, such as multiple
            input prompts, multimask_output=False can give better results.
          return_logits (bool): If true, returns un-thresholded masks logits
            instead of a binary mask.

        Returns:
          (np.ndarray): The output masks in CxHxW format, where C is the
            number of masks, and (H, W) is the original image size.
          (np.ndarray): An array of length C containing the model's
            predictions for the quality of each mask.
          (np.ndarray): An array of shape CxHxW, where C is the number
            of masks and H=W=256. These low resolution logits can be passed to
            a subsequent iteration as mask input.
        """
        # Transform input prompts

        coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
        if point_coords is not None:
            assert (
                    point_labels is not None
            ), "point_labels must be supplied if point_coords is supplied."
            point_coords = self.transform.apply_coords(point_coords, original_size)
            coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
            labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
            coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
        if box is not None:
            box = self.transform.apply_boxes(box, original_size)
            box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
            box_torch = box_torch[None, :]
        if mask_input is not None:
            mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
            mask_input_torch = mask_input_torch[None, :, :, :]

        sam_decoder_predict_torch_output = self.predict_torch(
            features,
            interm_features,
            original_size,
            input_size,
            coords_torch,
            labels_torch,
            box_torch,
            mask_input_torch,
            multimask_output,
            return_logits=return_logits,
            hq_token_only=hq_token_only,
        )

        masks_np = sam_decoder_predict_torch_output.masks[0].detach().cpu().numpy()
        iou_predictions_np = sam_decoder_predict_torch_output.iou_predictions[0].detach().cpu().numpy()
        low_res_masks_np = sam_decoder_predict_torch_output.low_res_masks[0].detach().cpu().numpy()
        return SAMDecoderPredictOutput(masks_np, iou_predictions_np, low_res_masks_np)

    @torch.no_grad()
    def predict_torch(
            self,
            features: torch.Tensor,
            interm_features: List[torch.Tensor],
            original_size: Tuple,
            input_size: Tuple,
            point_coords: Optional[torch.Tensor],
            point_labels: Optional[torch.Tensor],
            boxes: Optional[torch.Tensor] = None,
            mask_input: Optional[torch.Tensor] = None,
            multimask_output: bool = True,
            return_logits: bool = False,
            hq_token_only: bool = False,
    ) -> SAMDecoderPredictTorchOutput:
        """
        Predict masks for the given input prompts, using the currently set image.
        Input prompts are batched torch tensors and are expected to already be
        transformed to the input frame using ResizeLongestSide.

        Arguments:
          point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
            model. Each point is in (X,Y) in pixels.
          point_labels (torch.Tensor or None): A BxN array of labels for the
            point prompts. 1 indicates a foreground point and 0 indicates a
            background point.
          boxes (np.ndarray or None): A Bx4 array given a box prompt to the
            model, in XYXY format.
          mask_input (np.ndarray): A low resolution mask input to the model, typically
            coming from a previous prediction iteration. Has form Bx1xHxW, where
            for SAM, H=W=256. Masks returned by a previous iteration of the
            predict method do not need further transformation.
          multimask_output (bool): If true, the model will return three masks.
            For ambiguous input prompts (such as a single click), this will often
            produce better masks than a single prediction. If only a single
            mask is needed, the model's predicted quality score can be used
            to select the best mask. For non-ambiguous prompts, such as multiple
            input prompts, multimask_output=False can give better results.
          return_logits (bool): If true, returns un-thresholded masks logits
            instead of a binary mask.

        Returns:
          (torch.Tensor): The output masks in BxCxHxW format, where C is the
            number of masks, and (H, W) is the original image size.
          (torch.Tensor): An array of shape BxC containing the model's
            predictions for the quality of each mask.
          (torch.Tensor): An array of shape BxCxHxW, where C is the number
            of masks and H=W=256. These low res logits can be passed to
            a subsequent iteration as mask input.
        """

        if point_coords is not None:
            points = (point_coords, point_labels)
        else:
            points = None

        # Embed prompts
        sparse_embeddings, dense_embeddings = self.prompt_encoder(
            points=points,
            boxes=boxes,
            masks=mask_input,
        )

        # Predict masks
        low_res_masks, iou_predictions = self.mask_decoder(
            image_embeddings=features,
            image_pe=self.prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
            hq_token_only=hq_token_only,
            interm_embeddings=interm_features,
        )

        # Upscale the masks to the original image resolution
        # masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
        masks = self.postprocess_masks(low_res_masks, input_size, original_size)

        if not return_logits:
            masks = masks > self.mask_threshold

        return SAMDecoderPredictTorchOutput(masks, iou_predictions, low_res_masks)
    def forward(self,
                sam_encoder_output: Optional[SAMEncoderOutput]=None,
                features: Optional[torch.Tensor]=None,
                interm_features: Optional[List[torch.Tensor]]=None,
                original_size: Optional[Tuple]=None,
                input_size: Optional[Tuple]=None,
                point_coords: Optional[np.ndarray] = None,
                point_labels: Optional[np.ndarray] = None,
                box: Optional[np.ndarray] = None,
                mask_input: Optional[np.ndarray] = None,
                multimask_output: bool = True,
                return_logits: bool = False,
                hq_token_only: bool = False,
                dino: bool = False
    ) -> SAMDecoderPredictOutput:
        assert sam_encoder_output or (features is not None and original_size is not None and input_size is not None), 'one of sam_encoder_output and four necessary inputs must be given!'
        if sam_encoder_output:
            features = sam_encoder_output.features
            interm_features = sam_encoder_output.interm_features
            original_size = sam_encoder_output.original_size
            input_size = sam_encoder_output.input_size
        if self.adaptor is not None:
            if dino:
                features = F.interpolate(F.normalize(features, dim=1), size=(64, 64), mode='bilinear').permute(0, 2, 3, 1)
            features = self.adaptor(features)
            #
            # else:
            #     features = self.adaptor(features, original_size)

        return self.predict(features,
                            interm_features,
                            original_size,
                            input_size,
                            point_coords,
                            point_labels,
                            box,
                            mask_input,
                            multimask_output,
                            return_logits,
                            hq_token_only)
    
'''
class SAMPipeline(Pipeline):
    @classmethod
    def from_pretrained(cls, ckpt_path, device='cuda', *args, **kwargs):
        sam_encoder_pipeline = SAMEncoderPipeline(ckpt_path, device, *args, **kwargs)
        sam_decoder_pipeline = SAMDecoderPipeline(ckpt_path, device, *args, **kwargs)
        pipeline = cls(**dict(sam_encoder_pipeline=sam_encoder_pipeline,
                              sam_decoder_pipeline=sam_decoder_pipeline,
                              device=device))
        return pipeline
'''