File size: 6,840 Bytes
7dbe662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import math
import cv2
import PIL
import torch
from PIL.Image import Image
from typing import Union, Tuple, List, Optional
import numpy as np
import supervision as sv
from sklearn.decomposition import PCA

# def add_points_tag(img: Union[Image, np.ndarray],
#                    point_labels: Union[List[int], np.ndarray] = None,
#                    point_coords: Union[List[List[int]], np.ndarray] = None,
#                    pil: bool = False):
#     if point_labels is None or point_coords is None or \
#        not isinstance(point_labels, (List, np.ndarray)) or \
#        not isinstance(point_coords, (List, np.ndarray)):
#         return img
#     if len(point_labels) != len(point_coords):
#         print('length of point_label and point_coordinate must be same!')
#         return img
#     if isinstance(img, Image):
#         img = np.uint8(img)
#     start_angle = 40
#     x = 8
#     y = 2
#     def get_point(angle, d, base):
#         angle = angle / 180.0 * math.pi
#         _x, _y = math.cos(angle) * d, math.sin(angle) * d
#         return [base[0] + _x, base[1] - _y]
#     # assert len(point_labels) == len(point_coords), ''
#     for i in range(len(point_labels)):
#         points = []
#         for j in range(5):
#             _x, _y = math.cos(start_angle), math.sin(start_angle)
#             points.append(get_point(start_angle, x, point_coords[i]))
#             start_angle -= 36
#             points.append(get_point(start_angle, y, point_coords[i]))
#             start_angle -= 36
#         points = np.array([points], np.int32)
#         color = (255, 0, 0) if point_labels[i] == 0 else (0, 255, 0)
#         cv2.fillPoly(img, points, color, cv2.LINE_AA)
#     if pil:
#         img = PIL.Image.fromarray(img)
#     return img
def add_points_tag(img: Union[Image, np.ndarray],
                   point_labels: Union[List[int], np.ndarray] = None,
                   point_coords: Union[List[List[int]], np.ndarray] = None,
                   pil: bool = False):
    if point_labels is None or point_coords is None or \
       not isinstance(point_labels, (List, np.ndarray)) or \
       not isinstance(point_coords, (List, np.ndarray)):
        return img
    if len(point_labels) != len(point_coords):
        print('length of point_label and point_coordinate must be same!')
        return img
    if isinstance(img, Image):
        img = np.array(img)
    # img.flags.writeable = True
    h, w = img.shape[:2]
    x_start_list, x_end_list = np.where((point_coords[:, 0] - 4) > 0, point_coords[:, 0] - 4, 0), np.where((point_coords[:, 0] + 4) < w, point_coords[:, 0] + 4, w)
    y_start_list, y_end_list = np.where((point_coords[:, 1] - 4) > 0, point_coords[:, 1] - 4, 0), np.where((point_coords[:, 1] + 4) < h, point_coords[:, 1] + 4, h)
    for i in range(len(point_labels)):
        x_start, x_end = x_start_list[i], x_end_list[i]
        y_start, y_end = y_start_list[i], y_end_list[i]
        label = point_labels[i]
        color = [0, 255, 0] if int(label) == 1 else [255, 0, 0]
        for x in range(x_start, x_end):
            for y in range(y_start, y_end):
                img[y, x, :] = color
    if pil:
        img = PIL.Image.fromarray(img)
    return img
def add_boxes_tag(img: Union[Image, np.ndarray],
                  boxes: Union[List[List[int]], np.ndarray] = None,
                  pil: bool = False):
    if boxes is None or not isinstance(boxes, (List, np.ndarray)):
        return img
    # if isinstance(boxes, np.ndarray):
    #     if not boxes.all():
    #         return img
    # else:
    #     if not boxes:
    #         return img
    if isinstance(img, Image):
        img = np.uint8(img)
    thickness = 2
    for i in range(len(boxes)):
        color = (0, 255, 0)
        img = cv2.rectangle(img, (boxes[i][0], boxes[i][1]), (boxes[i][2], boxes[i][3]), color, thickness)
    if pil:
        img = PIL.Image.fromarray(img)
    return img

def add_prompts_tag(img: Union[Image, np.ndarray],
                    point_labels: Union[List[int], np.ndarray] = None,
                    point_coords: Union[List[List[int]], np.ndarray] = None,
                    boxes: Union[List[List[int]], np.ndarray] = None,
                    pil: bool = False):
    img = add_points_tag(img, point_labels, point_coords, pil=pil)
    img = add_boxes_tag(img, boxes, pil=pil)
    return img


def get_empty_detections():
    detections = sv.Detections(xyxy=np.array([0, 0, 0, 0]).reshape(1, 4))
    detections.xyxy = None
    return detections


def pca_feature(feature: torch.Tensor, dim: int = 3, return_np: bool = True):
    pca = PCA(n_components=dim)
    H, W, C = feature.shape
    feature = feature.view(-1, C).cpu().numpy()
    feature = pca.fit_transform(feature)
    feature = torch.tensor(feature.reshape(H, W, dim))
    if return_np:
        return feature.numpy()
    else:
        return feature

def visual_feature_rgb(feature: torch.Tensor, pil:bool = True):
    assert feature.ndim >= 3, 'the dim of feature must >= 3!'
    if feature.ndim == 4:
        feature = feature.squeeze(0)
    if feature.shape[-1] != 3:
        feature = pca_feature(feature, 3, False)
    max_f, _ = feature.max(-1)
    min_f, _ = feature.min(-1)
    feature = (feature - min_f[..., None]) / (max_f[..., None] - min_f[..., None])
    feature = np.uint8((feature*255).cpu().numpy())
    if pil:
        return PIL.Image.fromarray(feature)
    else:
        return feature

def transform_coords(src_shape, des_shape, points = None, boxes = None):
    assert points is not None or boxes is not None, 'one of points and boxes must be given!'
    scale_h = des_shape[0] / src_shape[0]
    scale_w = des_shape[1] / src_shape[1]
    if points is not None:
        new_points = np.full_like(points, 0)
        new_points[:, 0] = points[:, 0] * scale_w
        new_points[:, 1] = points[:, 1] * scale_h
        new_points.astype(np.int64)
    else:
        new_points = None
    if boxes is not None:
        new_boxes = np.full_like(boxes, 0)
        new_boxes[:, 0] = boxes[:, 0] * scale_w
        new_boxes[:, 1] = boxes[:, 1] * scale_h
        new_boxes[:, 2] = boxes[:, 2] * scale_w
        new_boxes[:, 3] = boxes[:, 3] * scale_h
        new_boxes.astype(np.int64)
    else:
        new_boxes = None
    return new_points, new_boxes


def mask2greyimg(mask_list, pil=True):
    grey_img_list = []
    for mask in mask_list:
        if pil:
            grey_img_list.append(PIL.Image.fromarray(np.uint8(mask*255)))
        else:
            grey_img_list.append(np.uint8(mask * 255))
    return grey_img_list
if __name__ == '__main__':
    src_shape = (100,100)
    des_shape = (200,200)
    points = np.array([[20,20],[40,40]])
    boxes = np.array([[10,10,20,20]])
    new_points, new_boxes = transform_coords(src_shape, des_shape, points, boxes)
    print(new_points, new_boxes)