Spaces:
Running
Running
File size: 15,393 Bytes
7dbe662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
from typing import Optional, Tuple, Union, List
import numpy as np
import PIL
from PIL.Image import Image
import supervision as sv
import torch
from torch import nn
from transformers import OwlViTProcessor, OwlViTForObjectDetection, OwlViTVisionModel
from transformers.models.owlvit.modeling_owlvit import center_to_corners_format, box_iou, generalized_box_iou, OwlViTObjectDetectionOutput
from sam_extension.pipeline.base import Pipeline, Output
class OwlViTVisionEncoderPipeline(Pipeline):
def __init__(self,
vision_model,
layer_norm,
processor,
device='cuda',
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.vision_model = vision_model
self.layer_norm = layer_norm
self.processor = processor
self.device = device
torch.cuda.empty_cache()
@classmethod
def from_pretrained(cls, model_type, device='cuda', *args, **kwargs):
owlvit_for_object_detection = OwlViTForObjectDetection.from_pretrained(model_type).to(device)
processor = OwlViTProcessor.from_pretrained(model_type)
return cls(owlvit_for_object_detection.owlvit.vision_model,
owlvit_for_object_detection.layer_norm,
processor,
device,
*args,
**kwargs)
def process_image(self, image:Image):
image = self.processor(images=image, return_tensors="pt").pixel_values.to(self.device)
return image
@torch.no_grad()
def forward(
self,
pixel_values: Union[torch.FloatTensor, Image] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
if isinstance(pixel_values, Image):
pixel_values = self.process_image(pixel_values)
pixel_values = pixel_values.to(self.device)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Get image embeddings
last_hidden_state = vision_outputs[0]
image_embeds = self.vision_model.post_layernorm(last_hidden_state)
new_size = tuple(np.array(image_embeds.shape) - np.array((0, 1, 0)))
class_token_out = torch.broadcast_to(image_embeds[:, :1, :], new_size)
# Merge image embedding with class tokens
image_embeds = image_embeds[:, 1:, :] * class_token_out
image_embeds = self.layer_norm(image_embeds)
# Resize to [batch_size, num_patches, num_patches, hidden_size]
new_size = (
image_embeds.shape[0],
int(np.sqrt(image_embeds.shape[1])),
int(np.sqrt(image_embeds.shape[1])),
image_embeds.shape[-1],
)
image_embeds = image_embeds.reshape(new_size)
return image_embeds
class OwlViTDecoderPipeline(Pipeline):
prompt_template: str = 'a photo of a '
def __init__(self,
owlvit_text,
text_projection,
class_head,
box_head,
processor,
device='cuda',
*args,
**kwargs):
super().__init__(*args, **kwargs)
self.owlvit_text = owlvit_text
self.text_projection = text_projection
self.class_head = class_head
self.box_head = box_head
self.sigmoid = nn.Sigmoid()
self.processor = processor
self.device = device
torch.cuda.empty_cache()
@classmethod
def from_pretrained(cls, model_type, device='cuda', *args, **kwargs):
owlvit_for_object_detection = OwlViTForObjectDetection.from_pretrained(model_type).to(device)
processor = OwlViTProcessor.from_pretrained(model_type)
return cls(owlvit_for_object_detection.owlvit.text_model,
owlvit_for_object_detection.owlvit.text_projection,
owlvit_for_object_detection.class_head,
owlvit_for_object_detection.box_head,
processor,
device,
*args,
**kwargs)
def set_template(self, template: str):
self.prompt_template = template
def process_text(self, text:List, use_template:bool = True):
if use_template:
text = [[self.prompt_template+i for i in text[0]]]
inputs = self.processor(text=text, return_tensors="pt")
return inputs
def normalize_grid_corner_coordinates(self, feature_map: torch.FloatTensor):
# Computes normalized xy corner coordinates from feature_map.
if not feature_map.ndim == 4:
raise ValueError("Expected input shape is [batch_size, num_patches, num_patches, hidden_dim]")
device = feature_map.device
num_patches = feature_map.shape[1]
box_coordinates = np.stack(
np.meshgrid(np.arange(1, num_patches + 1), np.arange(1, num_patches + 1)), axis=-1
).astype(np.float32)
box_coordinates /= np.array([num_patches, num_patches], np.float32)
# Flatten (h, w, 2) -> (h*w, 2)
box_coordinates = box_coordinates.reshape(
box_coordinates.shape[0] * box_coordinates.shape[1], box_coordinates.shape[2]
)
box_coordinates = torch.from_numpy(box_coordinates).to(device)
return box_coordinates
def compute_box_bias(self, feature_map: torch.FloatTensor) -> torch.FloatTensor:
# The box center is biased to its position on the feature grid
box_coordinates = self.normalize_grid_corner_coordinates(feature_map)
box_coordinates = torch.clip(box_coordinates, 0.0, 1.0)
# Unnormalize xy
box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4)
# The box size is biased to the patch size
box_size = torch.full_like(box_coord_bias, 1.0 / feature_map.shape[-2])
box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4)
# Compute box bias
box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1)
return box_bias
def box_predictor(
self,
image_feats: torch.FloatTensor,
feature_map: torch.FloatTensor,
) -> torch.FloatTensor:
"""
Args:
image_feats:
Features extracted from the image, returned by the `image_text_embedder` method.
feature_map:
A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method.
Returns:
pred_boxes:
List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
"""
# Bounding box detection head [batch_size, num_boxes, 4].
pred_boxes = self.box_head(image_feats)
# Compute the location of each token on the grid and use it to compute a bias for the bbox prediction
pred_boxes += self.compute_box_bias(feature_map)
pred_boxes = self.sigmoid(pred_boxes)
return pred_boxes
def class_predictor(
self,
image_feats: torch.FloatTensor,
query_embeds: Optional[torch.FloatTensor] = None,
query_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.FloatTensor]:
"""
Args:
image_feats:
Features extracted from the `image_text_embedder`.
query_embeds:
Text query embeddings.
query_mask:
Must be provided with query_embeddings. A mask indicating which query embeddings are valid.
"""
(pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask)
return (pred_logits, image_class_embeds)
def image_text_embedder(
self,
input_ids: torch.Tensor,
image_embeds: torch.FloatTensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Tuple[torch.FloatTensor]:
# Encode text and image
text_outputs = self.owlvit_text(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
text_embeds = text_embeds / torch.linalg.norm(text_embeds, ord=2, dim=-1, keepdim=True)
return (text_embeds, image_embeds, text_outputs)
def embed_image_query(
self, query_image_features: torch.FloatTensor, query_feature_map: torch.FloatTensor
) -> torch.FloatTensor:
_, class_embeds = self.class_predictor(query_image_features)
pred_boxes = self.box_predictor(query_image_features, query_feature_map)
pred_boxes_as_corners = center_to_corners_format(pred_boxes)
# Loop over query images
best_class_embeds = []
best_box_indices = []
pred_boxes_device = pred_boxes_as_corners.device
for i in range(query_image_features.shape[0]):
each_query_box = torch.tensor([[0, 0, 1, 1]], device=pred_boxes_device)
each_query_pred_boxes = pred_boxes_as_corners[i]
ious, _ = box_iou(each_query_box, each_query_pred_boxes)
# If there are no overlapping boxes, fall back to generalized IoU
if torch.all(ious[0] == 0.0):
ious = generalized_box_iou(each_query_box, each_query_pred_boxes)
# Use an adaptive threshold to include all boxes within 80% of the best IoU
iou_threshold = torch.max(ious) * 0.8
selected_inds = (ious[0] >= iou_threshold).nonzero()
if selected_inds.numel():
selected_embeddings = class_embeds[i][selected_inds[0]]
mean_embeds = torch.mean(class_embeds[i], axis=0)
mean_sim = torch.einsum("d,id->i", mean_embeds, selected_embeddings)
best_box_ind = selected_inds[torch.argmin(mean_sim)]
best_class_embeds.append(class_embeds[i][best_box_ind])
best_box_indices.append(best_box_ind)
if best_class_embeds:
query_embeds = torch.stack(best_class_embeds)
box_indices = torch.stack(best_box_indices)
else:
query_embeds, box_indices = None, None
return query_embeds, box_indices, pred_boxes
@torch.no_grad()
def forward(
self,
image_embeds: torch.FloatTensor,
input_ids: Optional[torch.Tensor] = None,
text: Optional[List] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> OwlViTObjectDetectionOutput:
if text is not None:
inputs = self.process_text(text)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
input_ids = input_ids.to(self.device)
image_embeds = image_embeds.to(self.device)
attention_mask = attention_mask.to(self.device)
output_attentions = output_attentions if output_attentions is not None else False
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else False
)
return_dict = return_dict if return_dict is not None else True
# Embed images and text queries
query_embeds, feature_map, text_outputs = self.image_text_embedder(
input_ids=input_ids,
image_embeds=image_embeds,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# Text and vision model outputs
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
# Reshape from [batch_size * max_text_queries, hidden_dim] -> [batch_size, max_text_queries, hidden_dim]
max_text_queries = input_ids.shape[0] // batch_size
query_embeds = query_embeds.reshape(batch_size, max_text_queries, query_embeds.shape[-1])
# If first token is 0, then this is a padded query [batch_size, num_queries].
input_ids = input_ids.reshape(batch_size, max_text_queries, input_ids.shape[-1])
query_mask = input_ids[..., 0] > 0
# Predict object classes [batch_size, num_patches, num_queries+1]
(pred_logits, class_embeds) = self.class_predictor(image_feats, query_embeds, query_mask)
# Predict object boxes
pred_boxes = self.box_predictor(image_feats, feature_map)
if not return_dict:
output = (
pred_logits,
pred_boxes,
query_embeds,
feature_map,
class_embeds,
text_outputs.to_tuple(),
None,
)
output = tuple(x for x in output if x is not None)
return output
return OwlViTObjectDetectionOutput(
image_embeds=feature_map,
text_embeds=query_embeds,
pred_boxes=pred_boxes.cpu(),
logits=pred_logits.cpu(),
class_embeds=class_embeds,
text_model_output=text_outputs,
vision_model_output=None,
)
def owlvit_visualize(self,
image: Image,
texts: List,
owlvit_objectdetection_output: OwlViTObjectDetectionOutput,
score_threshold: float = 0.1,
pil=True):
target_sizes = torch.Tensor([image.size[::-1]])
# Convert outputs (bounding boxes and class logits) to COCO API
results = self.processor.post_process(outputs=owlvit_objectdetection_output, target_sizes=target_sizes)
text = texts[0]
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
boxes_np = []
labels_list = []
# Print detected objects and rescaled box coordinates
for box, score, label in zip(boxes, scores, labels):
box = [int(i) for i in box.tolist()]
if score >= score_threshold:
labels_list.append(f"{text[label]} {round(score.item(), 3)}")
boxes_np.append(box)
print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
boxes_np = np.array(boxes_np)
detections = sv.Detections(xyxy=boxes_np)
image_np = np.uint8(image)[:, :, ::-1]
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=image_np.copy(), detections=detections, labels=labels_list)
if pil:
return PIL.Image.fromarray(annotated_frame[:, :, ::-1])
else:
return annotated_frame[:, :, ::-1]
|