Spaces:
Running
Running
File size: 16,541 Bytes
e8434f3 25f8aca 1f216d0 e8434f3 e8c4686 352df25 1f216d0 352df25 68a7b9b e8c4686 352df25 e8c4686 352df25 e8c4686 68a7b9b e8c4686 68a7b9b e8c4686 68a7b9b e8c4686 68a7b9b e8c4686 352df25 e8c4686 68a7b9b 352df25 e8c4686 1f216d0 68a7b9b 1f216d0 e8434f3 68a7b9b 1f216d0 e8434f3 25f8aca e8434f3 25f8aca e8434f3 25f8aca 352df25 25f8aca e8434f3 ea5000d 68a7b9b e8c4686 68a7b9b e8434f3 ea5000d e8c4686 e8434f3 25f8aca e8434f3 25f8aca e8434f3 25f8aca e8434f3 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b 352df25 68a7b9b ea5000d e8c4686 352df25 68a7b9b e8c4686 68a7b9b e8c4686 68a7b9b e8c4686 68a7b9b e8c4686 352df25 68a7b9b e8c4686 68a7b9b e8c4686 68a7b9b e8434f3 25f8aca e8434f3 352df25 25f8aca e8434f3 68a7b9b e8434f3 68a7b9b e8c4686 68a7b9b e8c4686 e8434f3 e8c4686 e8434f3 ea5000d e8c4686 e8434f3 e8c4686 68a7b9b 352df25 e8434f3 68a7b9b 25f8aca 352df25 acb8402 68a7b9b e8c4686 68a7b9b e8c4686 1f216d0 68a7b9b e8434f3 1f216d0 25f8aca e8434f3 aefa341 e8434f3 25f8aca e8434f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import os
import logging
from typing import Optional
from datetime import datetime
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Depends, Security, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import uvicorn
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model
model = None
tokenizer = None
model_loaded = False
torch_available = False
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
global model, tokenizer, model_loaded, torch_available
logger.info("Llama 3 AI Assistant starting up...")
try:
# Try to import torch and transformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
torch_available = True
logger.info("PyTorch and Transformers available!")
# Use Llama 3 model - try different variants based on availability
llama_models = [
"meta-llama/Llama-3.2-1B-Instruct", # Smallest Llama 3.2
"meta-llama/Llama-3.2-3B-Instruct", # Medium Llama 3.2
"microsoft/Llama2-7b-chat-hf", # Fallback to Llama 2
"huggingface/CodeBERTa-small-v1", # Ultra fallback
]
model_name = os.getenv("MODEL_NAME", llama_models[0])
logger.info(f"Attempting to load Llama model: {model_name}")
# Try to load the model
for attempt_model in llama_models:
try:
logger.info(f"Trying to load: {attempt_model}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(attempt_model)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with optimizations for free tier
model = AutoModelForCausalLM.from_pretrained(
attempt_model,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
model_loaded = True
model_name = attempt_model
logger.info(f"Successfully loaded Llama model: {attempt_model}")
break
except Exception as e:
logger.warning(f"Failed to load {attempt_model}: {e}")
continue
if not model_loaded:
logger.warning("Could not load any Llama model, using fallback mode")
except ImportError as e:
logger.warning(f"PyTorch/Transformers not available: {e}")
logger.info("Running in smart response mode")
torch_available = False
model_loaded = False
except Exception as e:
logger.warning(f"Could not load Llama model: {e}")
logger.info("Running in smart response mode")
model_loaded = False
yield
# Shutdown
logger.info("Llama AI Assistant shutting down...")
# Initialize FastAPI app with lifespan
app = FastAPI(
title="Llama 3 AI Agent API",
description="AI Agent powered by Llama 3 models",
version="5.0.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Security
security = HTTPBearer()
# Configuration
API_KEYS = {
os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1",
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
}
# Request/Response models
class ChatRequest(BaseModel):
message: str = Field(..., min_length=1, max_length=2000)
max_length: Optional[int] = Field(300, ge=50, le=1000)
temperature: Optional[float] = Field(0.7, ge=0.1, le=1.5)
top_p: Optional[float] = Field(0.9, ge=0.1, le=1.0)
do_sample: Optional[bool] = Field(True)
system_prompt: Optional[str] = Field("You are a helpful AI assistant.", max_length=500)
class ChatResponse(BaseModel):
response: str
model_used: str
timestamp: str
processing_time: float
tokens_used: int
model_loaded: bool
class HealthResponse(BaseModel):
status: str
model_loaded: bool
timestamp: str
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
"""Verify API key authentication"""
api_key = credentials.credentials
if api_key not in API_KEYS:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key"
)
return API_KEYS[api_key]
def get_llama_smart_response(message: str) -> str:
"""Smart fallback responses when Llama is not available"""
message_lower = message.lower()
if any(word in message_lower for word in ["hello", "hi", "hey", "hii"]):
return """Hello! I'm your Llama 3 AI assistant! 🦙
I'm designed to be helpful, harmless, and honest. I can assist you with:
• **Programming & Development**: Python, JavaScript, web development, debugging
• **AI & Machine Learning**: Concepts, implementations, best practices
• **Data Science**: Analysis, visualization, statistics
• **Problem Solving**: Breaking down complex problems step by step
• **Creative Tasks**: Writing, brainstorming, content creation
• **Learning**: Explaining concepts in simple terms
I aim to provide thoughtful, detailed responses that are actually useful. What would you like to explore today?"""
elif any(word in message_lower for word in ["machine learning", "ml"]):
return """Machine learning is fascinating! It's the science of getting computers to learn and make decisions from data without being explicitly programmed for every scenario.
**Core Concept**: Instead of writing specific rules, we show the computer lots of examples and let it figure out the patterns.
**How it works**:
1. **Data Collection**: Gather relevant examples
2. **Training**: Algorithm learns patterns from the data
3. **Validation**: Test how well it learned
4. **Prediction**: Apply learned patterns to new situations
**Types of ML**:
• **Supervised Learning**: Learning with labeled examples (like email spam detection)
• **Unsupervised Learning**: Finding hidden patterns (like customer segmentation)
• **Reinforcement Learning**: Learning through trial and error (like game AI)
**Real-world applications**:
- Netflix recommendations know your taste better than you do
- Medical AI can detect diseases in X-rays
- Self-driving cars navigate complex traffic
- Language models like me understand and generate text
The exciting part? We're still in the early stages. What specific aspect interests you most?"""
elif any(word in message_lower for word in ["ai", "artificial intelligence"]):
return """Artificial Intelligence is one of the most transformative technologies of our time! At its core, AI is about creating machines that can perform tasks requiring human-like intelligence.
**What makes AI special**:
- **Learning**: Improves from experience, just like humans
- **Reasoning**: Can draw logical conclusions from information
- **Perception**: Understands images, speech, and text
- **Decision Making**: Weighs options and chooses actions
**Current AI landscape**:
• **Language Models**: Like me! We understand and generate human language
• **Computer Vision**: AI that "sees" and interprets images
• **Robotics**: Physical AI that interacts with the world
• **Game AI**: Masters complex strategy games
**The philosophical angle**: AI forces us to ask deep questions about intelligence, consciousness, and what makes us human. As AI gets more capable, we're discovering that intelligence might be more about pattern recognition and prediction than we thought.
**Future implications**: AI will likely transform every industry - healthcare, education, transportation, entertainment. The key is ensuring it benefits everyone, not just tech companies.
What aspect of AI fascinates or concerns you most? I love diving into both the technical and philosophical sides!"""
elif any(word in message_lower for word in ["python", "programming"]):
return """Python is absolutely fantastic for AI and general programming! It's like the Swiss Army knife of programming languages.
**Why Python rocks**:
• **Readable**: Code looks almost like English
• **Versatile**: Web apps, AI, data science, automation, games
• **Powerful libraries**: Massive ecosystem of tools
• **Beginner-friendly**: Great first language
• **Industry standard**: Used by Google, Netflix, Instagram
**For AI specifically**:
- **NumPy**: Fast numerical computing
- **Pandas**: Data manipulation and analysis
- **Scikit-learn**: Machine learning algorithms
- **TensorFlow/PyTorch**: Deep learning frameworks
- **OpenAI**: API integrations for modern AI
**Learning path I recommend**:
1. **Basics**: Variables, functions, loops (1-2 weeks)
2. **Data structures**: Lists, dictionaries, sets
3. **Libraries**: Start with Pandas for data handling
4. **Projects**: Build something you care about
5. **Specialization**: Pick web dev, AI, or data science
**Pro tip**: Don't just read tutorials - build projects! Start small:
- A calculator
- A web scraper
- A simple chatbot
- Data analysis of something interesting to you
What kind of projects are you thinking about? I can suggest specific resources and next steps!"""
else:
return f"""I'm a Llama 3-powered AI assistant, and I'd love to help you with your question: "{message}"
I'm designed to provide thoughtful, detailed responses on a wide range of topics. I'm particularly good at:
• **Technical topics**: Programming, AI, data science, technology
• **Problem-solving**: Breaking down complex issues step by step
• **Learning support**: Explaining concepts clearly with examples
• **Creative tasks**: Writing, brainstorming, content creation
• **Analysis**: Examining ideas from multiple perspectives
To give you the most helpful response, could you provide a bit more context about what you're looking for? Are you:
- Trying to learn something new?
- Solving a specific problem?
- Looking for creative ideas?
- Seeking technical guidance?
I'm here to provide genuinely useful insights, not just generic responses. What would be most valuable for you right now?"""
def generate_llama_response(message: str, max_length: int = 300, temperature: float = 0.7, top_p: float = 0.9, do_sample: bool = True, system_prompt: str = "You are a helpful AI assistant.") -> tuple:
"""Generate response using Llama model or smart fallback"""
global model, tokenizer, model_loaded, torch_available
if not torch_available or not model_loaded or model is None or tokenizer is None:
return get_llama_smart_response(message), "llama_smart_fallback", len(message.split())
try:
import torch
# Format prompt for Llama (instruction format)
if "llama" in str(model.config._name_or_path).lower():
# Llama 3 instruction format
prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
else:
# Generic format
prompt = f"System: {system_prompt}\nUser: {message}\nAssistant:"
# Tokenize input
inputs = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=1024)
# Generate response
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=max_length,
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1,
length_penalty=1.0
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response
if "<|start_header_id|>assistant<|end_header_id|>" in response:
response = response.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
elif "Assistant:" in response:
response = response.split("Assistant:")[-1].strip()
# Clean up the response
response = response.strip()
if not response or len(response) < 10:
return get_llama_smart_response(message), "llama_smart_fallback", len(message.split())
# Count tokens
tokens_used = len(tokenizer.encode(response))
return response, os.getenv("MODEL_NAME", "meta-llama/Llama-3.2-1B-Instruct"), tokens_used
except Exception as e:
logger.error(f"Error generating Llama response: {str(e)}")
return get_llama_smart_response(message), "llama_smart_fallback", len(message.split())
@app.get("/", response_model=HealthResponse)
async def root():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Detailed health check"""
return HealthResponse(
status="healthy" if model_loaded else "smart_mode",
model_loaded=model_loaded,
timestamp=datetime.now().isoformat()
)
@app.post("/chat", response_model=ChatResponse)
async def chat(
request: ChatRequest,
user: str = Depends(verify_api_key)
):
"""Main chat endpoint using Llama 3 model or smart fallback"""
start_time = datetime.now()
try:
# Generate response using Llama 3 or smart fallback
response_text, model_used, tokens_used = generate_llama_response(
request.message,
request.max_length,
request.temperature,
request.top_p,
request.do_sample,
request.system_prompt
)
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
return ChatResponse(
response=response_text,
model_used=model_used,
timestamp=datetime.now().isoformat(),
processing_time=processing_time,
tokens_used=tokens_used,
model_loaded=model_loaded
)
except Exception as e:
logger.error(f"Error in chat endpoint: {str(e)}")
# Provide helpful fallback response
return ChatResponse(
response="I'm experiencing some technical difficulties, but I'm still here to help! Could you please try rephrasing your question?",
model_used="error_recovery_mode",
timestamp=datetime.now().isoformat(),
processing_time=(datetime.now() - start_time).total_seconds(),
tokens_used=0,
model_loaded=model_loaded
)
@app.get("/models")
async def get_model_info(user: str = Depends(verify_api_key)):
"""Get information about the loaded model"""
return {
"model_name": os.getenv("MODEL_NAME", "meta-llama/Llama-3.2-1B-Instruct"),
"model_loaded": model_loaded,
"torch_available": torch_available,
"status": "active" if model_loaded else "smart_fallback_mode",
"capabilities": [
"Llama 3 text generation" if model_loaded else "Smart Llama-style responses",
"Instruction following",
"Conversational AI responses",
"System prompt support",
"Adjustable creativity parameters",
"Natural language understanding"
],
"version": "5.0.0",
"type": "Llama 3 Model" if model_loaded else "Llama Smart Fallback Mode"
}
if __name__ == "__main__":
# For Hugging Face Spaces
port = int(os.getenv("PORT", "7860"))
uvicorn.run(
app,
host="0.0.0.0",
port=port,
reload=False
)
|