Spaces:
Runtime error
Runtime error
File size: 13,571 Bytes
c766ff7 7a2d7e1 c766ff7 7a2d7e1 c766ff7 1ef167a c766ff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import gradio as gr
import os
import shutil
import subprocess
import cv2
import numpy as np
import math
from huggingface_hub import snapshot_download
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
model_ids = [
'runwayml/stable-diffusion-v1-5',
'lllyasviel/sd-controlnet-depth',
'lllyasviel/sd-controlnet-canny',
'lllyasviel/sd-controlnet-openpose',
# "lllyasviel/control_v11p_sd15_softedge",
# "lllyasviel/control_v11p_sd15_scribble",
# "lllyasviel/control_v11p_sd15_lineart_anime",
# "lllyasviel/control_v11p_sd15_lineart",
# "lllyasviel/control_v11f1p_sd15_depth",
# "lllyasviel/control_v11p_sd15_canny",
# "lllyasviel/control_v11p_sd15_openpose",
# "lllyasviel/control_v11p_sd15_normalbae"
]
for model_id in model_ids:
model_name = model_id.split('/')[-1]
snapshot_download(model_id, cache_dir=f'checkpoints/{model_name}')
def load_model(model_id):
local_dir = f'checkpoints/stable-diffusion-v1-5'
# Check if the directory exists
if os.path.exists(local_dir):
# Delete the directory if it exists
shutil.rmtree(local_dir)
model_name = model_id.split('/')[-1]
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
os.rename(f'checkpoints/{model_name}', f'checkpoints/stable-diffusion-v1-5')
return "model loaded"
def get_frame_count(filepath):
if filepath is not None:
video = cv2.VideoCapture(filepath)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
video.release()
# LIMITS
if frame_count > 100 :
frame_count = 100 # limit to 100 frames to avoid cuDNN errors
return gr.update(maximum=frame_count)
else:
return gr.update(value=1, maximum=100 )
def get_video_dimension(filepath):
video = cv2.VideoCapture(filepath)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(video.get(cv2.CAP_PROP_FPS))
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
video.release()
return width, height, fps, frame_count
def resize_video(input_vid, output_vid, width, height, fps):
print(f"RESIZING ...")
# Open the input video file
video = cv2.VideoCapture(input_vid)
# Create a VideoWriter object to write the resized video
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
output_video = cv2.VideoWriter(output_vid, fourcc, fps, (width, height))
while True:
# Read a frame from the input video
ret, frame = video.read()
if not ret:
break
# Resize the frame to the desired dimensions
resized_frame = cv2.resize(frame, (width, height))
# Write the resized frame to the output video file
output_video.write(resized_frame)
# Release the video objects
video.release()
output_video.release()
print(f"RESIZE VIDEO DONE!")
return output_vid
def make_nearest_multiple_of_32(number):
remainder = number % 32
if remainder <= 16:
number -= remainder
else:
number += 32 - remainder
return number
def change_video_fps(input_path):
print(f"CHANGING FIANL OUTPUT FPS")
cap = cv2.VideoCapture(input_path)
# Check if the final file already exists
if os.path.exists('output_video.mp4'):
# Delete the existing file
os.remove('output_video.mp4')
output_path = 'output_video.mp4'
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_fps = 12
output_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
out = cv2.VideoWriter(output_path, fourcc, output_fps, output_size)
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Write the current frame to the output video multiple times to increase the frame rate
for _ in range(output_fps // 8):
out.write(frame)
frame_count += 1
print(f'Processed frame {frame_count}')
cap.release()
out.release()
cv2.destroyAllWindows()
return 'output_video.mp4'
def run_inference(prompt, video_path, version_condition, video_length, seed):
seed = math.floor(seed)
o_width = get_video_dimension(video_path)[0]
o_height = get_video_dimension(video_path)[1]
version, condition = version_condition.split("+")
# Prepare dimensions
if o_width > 512 :
# Calculate the new height while maintaining the aspect ratio
n_height = int(o_height / o_width * 512)
n_width = 512
else:
n_height = o_height
n_width = o_width
# Make sure new dimensions are multipe of 32
r_width = make_nearest_multiple_of_32(n_width)
r_height = make_nearest_multiple_of_32(n_height)
print(f"multiple of 32 sizes : {r_width}x{r_height}")
# Get FPS of original video input
original_fps = get_video_dimension(video_path)[2]
if original_fps > 12 :
print(f"FPS is too high: {original_fps}")
target_fps = 12
else :
target_fps = original_fps
print(f"NEW INPUT FPS: {target_fps}, NEW LENGTH: {video_length}")
# Check if the resized file already exists
if os.path.exists('resized.mp4'):
# Delete the existing file
os.remove('resized.mp4')
resized = resize_video(video_path, 'resized.mp4', r_width, r_height, target_fps)
resized_video_fcount = get_video_dimension(resized)[3]
print(f"RESIZED VIDEO FRAME COUNT: {resized_video_fcount}")
# Make sure new total frame count is enough to handle chosen video length
if video_length > resized_video_fcount :
video_length = resized_video_fcount
# video_length = int((target_fps * video_length) / original_fps)
output_path = 'output/'
os.makedirs(output_path, exist_ok=True)
# Check if the file already exists
if os.path.exists(os.path.join(output_path, f"result.mp4")):
# Delete the existing file
os.remove(os.path.join(output_path, f"result.mp4"))
print(f"RUNNING INFERENCE ...")
if video_length > 16:
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_video_name 'result' --width {r_width} --height {r_height} --seed {seed} --video_length {video_length} --smoother_steps 19 20 --version {version} --is_long_video"
else:
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_video_name 'result' --width {r_width} --height {r_height} --seed {seed} --video_length {video_length} --smoother_steps 19 20 --version {version} "
try:
subprocess.run(command, shell=True)
except cuda.Error as e:
return f"CUDA Error: {e}", None
except RuntimeError as e:
return f"Runtime Error: {e}", None
# Construct the video path
video_path_output = os.path.join(output_path, f"result.mp4")
# Resize to original video input size
#o_width = get_video_dimension(video_path)[0]
#o_height = get_video_dimension(video_path)[1]
#resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps)
# Check generated video FPS
gen_fps = get_video_dimension(video_path_output)[2]
print(f"GEN VIDEO FPS: {gen_fps}")
final = change_video_fps(video_path_output)
print(f"FINISHED !")
return final
# return final, gr.Group.update(visible=True)
css="""
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 13rem;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: block;
margin: auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
<h1 style="text-align: center;">ControlVideo: Training-free Controllable Text-to-Video Generation</h1>
<p style="text-align: center;">
[<a href="https://arxiv.org/abs/2305.13077" style="color:blue;">arXiv</a>]
[<a href="https://github.com/YBYBZhang/ControlVideo" style="color:blue;">GitHub</a>]
</p>
<p style="text-align: center;"> ControlVideo adapts ControlNet to the video counterpart without any finetuning, aiming to directly inherit its high-quality and consistent generation. </p>
""")
with gr.Column():
with gr.Row():
video_path = gr.Video(label="Input video", source="upload", type="filepath", visible=True, elem_id="video-in")
video_res = gr.Video(label="result", elem_id="video-out")
# with gr.Column():
# video_res = gr.Video(label="result", elem_id="video-out")
# with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
# community_icon = gr.HTML(community_icon_html)
# loading_icon = gr.HTML(loading_icon_html)
# share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Row():
chosen_model = gr.Dropdown(label="Diffusion model (*1.5)", choices=['runwayml/stable-diffusion-v1-5','nitrosocke/Ghibli-Diffusion'], value="runwayml/stable-diffusion-v1-5", allow_custom_value=True)
model_status = gr.Textbox(label="status")
load_model_btn = gr.Button("load model (optional)")
prompt = gr.Textbox(label="prompt", info="If you loaded a custom model, do not forget to include Prompt trigger", elem_id="prompt-in")
with gr.Column():
video_length = gr.Slider(label="Video length", info="How many frames do you want to process ? For demo purpose, max is set to 24", minimum=1, maximum=12, step=1, value=2)
with gr.Row():
# version = gr.Dropdown(label="ControlNet version", choices=["v10", "v11"], value="v10")
version_condition = gr.Dropdown(label="ControlNet version + Condition",
choices=["v10+depth_midas", "v10+canny", "v10+openpose"],
value="v10+depth_midas")
# "v11+softedge_pidinet", "v11+softedge_pidsafe",
# "v11+softedge_hed", "v11+softedge_hedsafe", "v11+scribble_hed", "v11+scribble_pidinet", "v11+lineart_anime",
# "v11+lineart_coarse", "v11+lineart_realistic", "v11+depth_midas", "v11+depth_leres", "v11+depth_leres++",
# "v11+depth_zoe", "v11+canny", "v11+openpose", "v11+openpose_face", "v11+openpose_faceonly", "v11+openpose_full",
# "v11+openpose_hand", "v11+normal_bae"],
seed = gr.Number(label="seed", value=42)
submit_btn = gr.Button("Submit")
gr.Examples(
examples=[["James bond moonwalks on the beach.", "./examples/moonwalk.mp4", 'v10+openpose', 15, 42],
["A striking mallard floats effortlessly on the sparkling pond.", "./examples/mallard-water.mp4", "v10+depth_midas", 15, 42]],
fn=run_inference,
inputs=[prompt,
video_path,
version_condition,
video_length,
seed,
],
# outputs=[video_res, share_group],
outputs=video_res,
cache_examples=False
)
# share_button.click(None, [], [], _js=share_js)
load_model_btn.click(fn=load_model, inputs=[chosen_model], outputs=[model_status], queue=False)
video_path.change(fn=get_frame_count,
inputs=[video_path],
outputs=[video_length],
queue=False
)
submit_btn.click(fn=run_inference,
inputs=[prompt,
video_path,
version_condition,
video_length,
seed,
],
outputs=video_res)
demo.queue(max_size=12).launch() |