Spaces:
Running
Running
File size: 5,810 Bytes
123489f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
"""
resnet.py - A modified ResNet structure
We append extra channels to the first conv by some network surgery
"""
from collections import OrderedDict
import math
import torch
import torch.nn as nn
from torch.utils import model_zoo
def load_weights_add_extra_dim(target, source_state, extra_dim=1):
new_dict = OrderedDict()
for k1, v1 in target.state_dict().items():
if not "num_batches_tracked" in k1:
if k1 in source_state:
tar_v = source_state[k1]
if v1.shape != tar_v.shape:
# Init the new segmentation channel with zeros
# print(v1.shape, tar_v.shape)
c, _, w, h = v1.shape
pads = torch.zeros((c, extra_dim, w, h), device=tar_v.device)
nn.init.orthogonal_(pads)
tar_v = torch.cat([tar_v, pads], 1)
new_dict[k1] = tar_v
target.load_state_dict(new_dict)
model_urls = {
"resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth",
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
}
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
dilation=dilation,
bias=False,
)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride=stride, dilation=dilation)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, stride=1, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes,
planes,
kernel_size=3,
stride=stride,
dilation=dilation,
padding=dilation,
bias=False,
)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers=(3, 4, 23, 3), extra_dim=0):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(
3 + extra_dim, 64, kernel_size=7, stride=2, padding=3, bias=False
)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
),
nn.BatchNorm2d(planes * block.expansion),
)
layers = [block(self.inplanes, planes, stride, downsample)]
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
def resnet18(pretrained=True, extra_dim=0):
model = ResNet(BasicBlock, [2, 2, 2, 2], extra_dim)
if pretrained:
load_weights_add_extra_dim(
model, model_zoo.load_url(model_urls["resnet18"]), extra_dim
)
return model
def resnet50(pretrained=True, extra_dim=0):
model = ResNet(Bottleneck, [3, 4, 6, 3], extra_dim)
if pretrained:
load_weights_add_extra_dim(
model, model_zoo.load_url(model_urls["resnet50"]), extra_dim
)
return model
|