Spaces:
Running
Running
File size: 1,331 Bytes
1cf1e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import sys
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
from config import config
from .japanese import text2sep_kata
LOCAL_PATH = "./bert/deberta-v2-large-japanese-char-wwm"
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)
models = dict()
def get_bert_feature(text, word2ph, device=config.bert_gen_config.device):
text = "".join(text2sep_kata(text)[0])
if (
sys.platform == "darwin"
and torch.backends.mps.is_available()
and device == "cpu"
):
device = "mps"
if not device:
device = "cuda"
if device not in models.keys():
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = models[device](**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
assert len(word2ph) == len(text) + 2
word2phone = word2ph
phone_level_feature = []
for i in range(len(word2phone)):
repeat_feature = res[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
|