File size: 8,852 Bytes
1cf1e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
@Desc: 全局配置文件读取
"""
import argparse
import yaml
from typing import Dict, List
import os
import shutil
import sys


class Resample_config:
    """重采样配置"""

    def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100):
        self.sampling_rate: int = sampling_rate  # 目标采样率
        self.in_dir: str = in_dir  # 待处理音频目录路径
        self.out_dir: str = out_dir  # 重采样输出路径

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        """从字典中生成实例"""

        # 不检查路径是否有效,此逻辑在resample.py中处理
        data["in_dir"] = os.path.join(dataset_path, data["in_dir"])
        data["out_dir"] = os.path.join(dataset_path, data["out_dir"])

        return cls(**data)


class Preprocess_text_config:
    """数据预处理配置"""

    def __init__(
        self,
        transcription_path: str,
        cleaned_path: str,
        train_path: str,
        val_path: str,
        config_path: str,
        val_per_lang: int = 5,
        max_val_total: int = 10000,
        clean: bool = True,
    ):
        self.transcription_path: str = transcription_path  # 原始文本文件路径,文本格式应为{wav_path}|{speaker_name}|{language}|{text}。
        self.cleaned_path: str = cleaned_path  # 数据清洗后文本路径,可以不填。不填则将在原始文本目录生成
        self.train_path: str = train_path  # 训练集路径,可以不填。不填则将在原始文本目录生成
        self.val_path: str = val_path  # 验证集路径,可以不填。不填则将在原始文本目录生成
        self.config_path: str = config_path  # 配置文件路径
        self.val_per_lang: int = val_per_lang  # 每个speaker的验证集条数
        self.max_val_total: int = max_val_total  # 验证集最大条数,多于的会被截断并放到训练集中
        self.clean: bool = clean  # 是否进行数据清洗

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        """从字典中生成实例"""

        data["transcription_path"] = os.path.join(
            dataset_path, data["transcription_path"]
        )
        if data["cleaned_path"] == "" or data["cleaned_path"] is None:
            data["cleaned_path"] = None
        else:
            data["cleaned_path"] = os.path.join(dataset_path, data["cleaned_path"])
        data["train_path"] = os.path.join(dataset_path, data["train_path"])
        data["val_path"] = os.path.join(dataset_path, data["val_path"])
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Bert_gen_config:
    """bert_gen 配置"""

    def __init__(
        self,
        config_path: str,
        num_processes: int = 2,
        device: str = "cuda",
        use_multi_device: bool = False,
    ):
        self.config_path = config_path
        self.num_processes = num_processes
        self.device = device
        self.use_multi_device = use_multi_device

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Emo_gen_config:
    """emo_gen 配置"""

    def __init__(
        self,
        config_path: str,
        num_processes: int = 2,
        device: str = "cuda",
        use_multi_device: bool = False,
    ):
        self.config_path = config_path
        self.num_processes = num_processes
        self.device = device
        self.use_multi_device = use_multi_device

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Train_ms_config:
    """训练配置"""

    def __init__(
        self,
        config_path: str,
        env: Dict[str, any],
        base: Dict[str, any],
        model: str,
        num_workers: int,
        spec_cache: bool,
        keep_ckpts: int,
    ):
        self.env = env  # 需要加载的环境变量
        self.base = base  # 底模配置
        self.model = model  # 训练模型存储目录,该路径为相对于dataset_path的路径,而非项目根目录
        self.config_path = config_path  # 配置文件路径
        self.num_workers = num_workers  # worker数量
        self.spec_cache = spec_cache  # 是否启用spec缓存
        self.keep_ckpts = keep_ckpts  # ckpt数量

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        # data["model"] = os.path.join(dataset_path, data["model"])
        data["config_path"] = os.path.join(dataset_path, data["config_path"])

        return cls(**data)


class Webui_config:
    """webui 配置"""

    def __init__(
        self,
        device: str,
        model: str,
        config_path: str,
        language_identification_library: str,
        port: int = 7860,
        share: bool = False,
        debug: bool = False,
    ):
        self.device: str = device
        self.model: str = model  # 端口号
        self.config_path: str = config_path  # 是否公开部署,对外网开放
        self.port: int = port  # 是否开启debug模式
        self.share: bool = share  # 模型路径
        self.debug: bool = debug  # 配置文件路径
        self.language_identification_library: str = (
            language_identification_library  # 语种识别库
        )

    @classmethod
    def from_dict(cls, dataset_path: str, data: Dict[str, any]):
        data["config_path"] = os.path.join(dataset_path, data["config_path"])
        data["model"] = os.path.join(dataset_path, data["model"])
        return cls(**data)


class Server_config:
    def __init__(
        self, models: List[Dict[str, any]], port: int = 5000, device: str = "cuda"
    ):
        self.models: List[Dict[str, any]] = models  # 需要加载的所有模型的配置
        self.port: int = port  # 端口号
        self.device: str = device  # 模型默认使用设备

    @classmethod
    def from_dict(cls, data: Dict[str, any]):
        return cls(**data)


class Translate_config:
    """翻译api配置"""

    def __init__(self, app_key: str, secret_key: str):
        self.app_key = app_key
        self.secret_key = secret_key

    @classmethod
    def from_dict(cls, data: Dict[str, any]):
        return cls(**data)


class Config:
    def __init__(self, config_path: str):
        if not os.path.isfile(config_path) and os.path.isfile("default_config.yml"):
            shutil.copy(src="default_config.yml", dst=config_path)
            print(
                f"已根据默认配置文件default_config.yml生成配置文件{config_path}。请按该配置文件的说明进行配置后重新运行。"
            )
            print("如无特殊需求,请勿修改default_config.yml或备份该文件。")
            sys.exit(0)
        with open(file=config_path, mode="r", encoding="utf-8") as file:
            yaml_config: Dict[str, any] = yaml.safe_load(file.read())
            dataset_path: str = yaml_config["dataset_path"]
            openi_token: str = yaml_config["openi_token"]
            self.dataset_path: str = dataset_path
            self.mirror: str = yaml_config["mirror"]
            self.openi_token: str = openi_token
            self.resample_config: Resample_config = Resample_config.from_dict(
                dataset_path, yaml_config["resample"]
            )
            self.preprocess_text_config: Preprocess_text_config = (
                Preprocess_text_config.from_dict(
                    dataset_path, yaml_config["preprocess_text"]
                )
            )
            self.bert_gen_config: Bert_gen_config = Bert_gen_config.from_dict(
                dataset_path, yaml_config["bert_gen"]
            )
            self.emo_gen_config: Emo_gen_config = Emo_gen_config.from_dict(
                dataset_path, yaml_config["emo_gen"]
            )
            self.train_ms_config: Train_ms_config = Train_ms_config.from_dict(
                dataset_path, yaml_config["train_ms"]
            )
            self.webui_config: Webui_config = Webui_config.from_dict(
                dataset_path, yaml_config["webui"]
            )
            self.server_config: Server_config = Server_config.from_dict(
                yaml_config["server"]
            )
            self.translate_config: Translate_config = Translate_config.from_dict(
                yaml_config["translate"]
            )


parser = argparse.ArgumentParser()
# 为避免与以前的config.json起冲突,将其更名如下
parser.add_argument("-y", "--yml_config", type=str, default="config.yml")
args, _ = parser.parse_known_args()
config = Config(args.yml_config)