File size: 4,291 Bytes
bf0a127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from flask import Flask, request, Response
from io import BytesIO
import torch
from av import open as avopen

import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
from scipy.io import wavfile

# Flask Init
app = Flask(__name__)
app.config['JSON_AS_ASCII'] = False
def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    print([f"{p}{t}" for p, t in zip(phone, tone)])
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w,length_scale,sid):
    bert, phones, tones, lang_ids = get_text(text,"ZH", hps,)
    with torch.no_grad():
        x_tst=phones.to(dev).unsqueeze(0)
        tones=tones.to(dev).unsqueeze(0)
        lang_ids=lang_ids.to(dev).unsqueeze(0)
        bert = bert.to(dev).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(dev)
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(dev)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids,bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        return audio

def replace_punctuation(text, i=2):
    punctuation = ",。?!"
    for char in punctuation:
        text = text.replace(char, char * i)
    return text

def wav2(i, o, format):
    inp = avopen(i, 'rb')
    out = avopen(o, 'wb', format=format)
    if format == "ogg": format = "libvorbis"

    ostream = out.add_stream(format)

    for frame in inp.decode(audio=0):
        for p in ostream.encode(frame): out.mux(p)

    for p in ostream.encode(None): out.mux(p)

    out.close()
    inp.close()

# Load Generator
hps = utils.get_hparams_from_file("./configs/config.json")

dev='cuda'
net_g = SynthesizerTrn(
    len(symbols),
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    n_speakers=hps.data.n_speakers,
    **hps.model).to(dev)
_ = net_g.eval()

_ = utils.load_checkpoint("logs/G_649000.pth", net_g, None,skip_optimizer=True)

@app.route("/",methods=['GET','POST'])
def main():
    if request.method == 'GET':
        try:
            speaker = request.args.get('speaker')
            text = request.args.get('text').replace("/n","")
            sdp_ratio = float(request.args.get("sdp_ratio", 0.2))
            noise = float(request.args.get("noise", 0.5))
            noisew = float(request.args.get("noisew", 0.6))
            length = float(request.args.get("length", 1.2))
            if length >= 2:
                return "Too big length"
            if len(text) >=200:
                return "Too long text"
            fmt = request.args.get("format", "wav")
            if None in (speaker, text):
                return "Missing Parameter"
            if fmt not in ("mp3", "wav", "ogg"):
                return "Invalid Format"
        except:
            return "Invalid Parameter"

        with torch.no_grad():
            audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise, noise_scale_w=noisew, length_scale=length, sid=speaker)

        with BytesIO() as wav:
            wavfile.write(wav, hps.data.sampling_rate, audio)
            torch.cuda.empty_cache()
            if fmt == "wav":
                return Response(wav.getvalue(), mimetype="audio/wav")
            wav.seek(0, 0)
            with BytesIO() as ofp:
                wav2(wav, ofp, fmt)
                return Response(
                    ofp.getvalue(),
                    mimetype="audio/mpeg" if fmt == "mp3" else "audio/ogg"
                )