File size: 5,937 Bytes
bf0a127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78e14e1
bf0a127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f5cc2
78e14e1
82f5cc2
78e14e1
82f5cc2
78e14e1
82f5cc2
78e14e1
82f5cc2
bf0a127
3169d27
bf0a127
3169d27
 
 
78e14e1
3169d27
bf0a127
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import sys, os

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")

logger = logging.getLogger(__name__)

import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser


net_g = None


def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst=phones.to(device).unsqueeze(0)
        tones=tones.to(device).unsqueeze(0)
        lang_ids=lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return audio

def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
    with torch.no_grad():
        audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker)
    return "Success", (hps.data.sampling_rate, audio)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_dir", default="./logs/Azuma/G_17400.pth", help="path of your model")
    parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file")
    parser.add_argument("--share", default=False, help="make link public")
    parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(args.config_dir)
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    '''
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    '''
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(device)
    _ = net_g.eval()

    _ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True)

    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    with gr.Blocks() as app:
        with gr.Row():
            with gr.Column():
                gr.Markdown(value="""
                【AI東雪蓮】在线语音合成(Bert-Vits2)\n
                作者:Xz乔希 https://space.bilibili.com/5859321\n
                声音归属:東雪蓮Official https://space.bilibili.com/1437582453\n
                Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
                【AI塔菲】语音合成:https://huggingface.co/spaces/XzJosh/Taffy-Bert-VITS2\n
                使用本模型请严格遵守法律法规!\n
                发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n                
                """)
                text = gr.TextArea(label="Text", placeholder="Input Text Here",
                                      value="请在这里输入你想要生成的文本内容")
                speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker')
                sdp_ratio = gr.Slider(minimum=0.1, maximum=1, value=0.2, step=0.1, label='SDP/DP混合比')
                noise_scale = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label='感情调节')
                noise_scale_w = gr.Slider(minimum=0.1, maximum=1, value=0.9, step=0.1, label='音素长度')
                length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成长度')
                btn = gr.Button("点击生成!", variant="primary")
            with gr.Column():
                text_output = gr.Textbox(label="Message")
                audio_output = gr.Audio(label="Output Audio")

        btn.click(tts_fn,
                inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale],
                outputs=[text_output, audio_output])
    
#    webbrowser.open("http://127.0.0.1:6006")
#    app.launch(server_port=6006, show_error=True)
        
    app.launch(show_error=True)