Spaces:
Runtime error
Runtime error
File size: 6,505 Bytes
8de8135 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Ultralytics YOLO π, AGPL-3.0 license
import math
import cv2
from ultralytics.utils.checks import check_imshow
from ultralytics.utils.plotting import Annotator, colors
class DistanceCalculation:
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
def __init__(
self,
names,
pixels_per_meter=10,
view_img=False,
line_thickness=2,
line_color=(255, 255, 0),
centroid_color=(255, 0, 255),
):
"""
Initializes the DistanceCalculation class with the given parameters.
Args:
names (dict): Dictionary mapping class indices to class names.
pixels_per_meter (int, optional): Conversion factor from pixels to meters. Defaults to 10.
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False.
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2.
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0).
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255).
"""
# Visual & image information
self.im0 = None
self.annotator = None
self.view_img = view_img
self.line_color = line_color
self.centroid_color = centroid_color
# Prediction & tracking information
self.clss = None
self.names = names
self.boxes = None
self.line_thickness = line_thickness
self.trk_ids = None
# Distance calculation information
self.centroids = []
self.pixel_per_meter = pixels_per_meter
# Mouse event information
self.left_mouse_count = 0
self.selected_boxes = {}
# Check if environment supports imshow
self.env_check = check_imshow(warn=True)
def mouse_event_for_distance(self, event, x, y, flags, param):
"""
Handles mouse events to select regions in a real-time video stream.
Args:
event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
x (int): X-coordinate of the mouse pointer.
y (int): Y-coordinate of the mouse pointer.
flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
param (dict): Additional parameters passed to the function.
"""
if event == cv2.EVENT_LBUTTONDOWN:
self.left_mouse_count += 1
if self.left_mouse_count <= 2:
for box, track_id in zip(self.boxes, self.trk_ids):
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
self.selected_boxes[track_id] = box
elif event == cv2.EVENT_RBUTTONDOWN:
self.selected_boxes = {}
self.left_mouse_count = 0
def extract_tracks(self, tracks):
"""
Extracts tracking results from the provided data.
Args:
tracks (list): List of tracks obtained from the object tracking process.
"""
self.boxes = tracks[0].boxes.xyxy.cpu()
self.clss = tracks[0].boxes.cls.cpu().tolist()
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
@staticmethod
def calculate_centroid(box):
"""
Calculates the centroid of a bounding box.
Args:
box (list): Bounding box coordinates [x1, y1, x2, y2].
Returns:
(tuple): Centroid coordinates (x, y).
"""
return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)
def calculate_distance(self, centroid1, centroid2):
"""
Calculates the distance between two centroids.
Args:
centroid1 (tuple): Coordinates of the first centroid (x, y).
centroid2 (tuple): Coordinates of the second centroid (x, y).
Returns:
(tuple): Distance in meters and millimeters.
"""
pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2)
distance_m = pixel_distance / self.pixel_per_meter
distance_mm = distance_m * 1000
return distance_m, distance_mm
def start_process(self, im0, tracks):
"""
Processes the video frame and calculates the distance between two bounding boxes.
Args:
im0 (ndarray): The image frame.
tracks (list): List of tracks obtained from the object tracking process.
Returns:
(ndarray): The processed image frame.
"""
self.im0 = im0
if tracks[0].boxes.id is None:
if self.view_img:
self.display_frames()
return im0
self.extract_tracks(tracks)
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids):
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
if len(self.selected_boxes) == 2:
for trk_id in self.selected_boxes.keys():
if trk_id == track_id:
self.selected_boxes[track_id] = box
if len(self.selected_boxes) == 2:
self.centroids = [self.calculate_centroid(self.selected_boxes[trk_id]) for trk_id in self.selected_boxes]
distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1])
self.annotator.plot_distance_and_line(
distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color
)
self.centroids = []
if self.view_img and self.env_check:
self.display_frames()
return im0
def display_frames(self):
"""Displays the current frame with annotations."""
cv2.namedWindow("Ultralytics Distance Estimation")
cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance)
cv2.imshow("Ultralytics Distance Estimation", self.im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
return
if __name__ == "__main__":
names = {0: "person", 1: "car"} # example class names
distance_calculation = DistanceCalculation(names)
|