Spaces:
Running
Running
File size: 43,524 Bytes
63a1401 ad27ecb 63a1401 d24f6e8 63a1401 42fccfa 63a1401 42fccfa 9da8cd9 e157bd5 42fccfa 1838e93 9da8cd9 15fa40a 9acf026 a5e428f 05052dc 1838e93 9da8cd9 05052dc 954e372 05052dc ec7c10d 9da8cd9 63a1401 05052dc 51b58f9 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 dcbdce4 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 ad27ecb 63a1401 ad27ecb 63a1401 bf50951 63a1401 ad27ecb 63a1401 ad27ecb 63a1401 ad27ecb 63a1401 ad27ecb 63a1401 ad27ecb 63a1401 bf50951 707eab3 bf50951 ad27ecb 63a1401 ad27ecb 63a1401 ad27ecb 63a1401 0e76736 63a1401 d24f6e8 ad27ecb d24f6e8 63a1401 ad27ecb 86c17df ad27ecb d24f6e8 ad27ecb dcbdce4 ad27ecb dcbdce4 ad27ecb bf50951 63a1401 2e0ca43 d24f6e8 2a968dc 9da8cd9 d24f6e8 2a968dc d24f6e8 2a968dc d24f6e8 2a968dc d24f6e8 2a968dc 9da8cd9 2a968dc d24f6e8 2a968dc d24f6e8 2a968dc 63a1401 e157bd5 63a1401 e157bd5 63a1401 ad27ecb 63a1401 ad27ecb 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 ad27ecb d24f6e8 63a1401 9da8cd9 63a1401 e157bd5 63a1401 e157bd5 d24f6e8 63a1401 ad27ecb 63a1401 ad27ecb e157bd5 ad27ecb e157bd5 ad27ecb 63a1401 ce1e7cd ad27ecb e157bd5 ad27ecb e157bd5 ad27ecb e157bd5 ad27ecb e157bd5 ad27ecb e157bd5 d24f6e8 63a1401 d24f6e8 e157bd5 63a1401 ad27ecb 63a1401 ce1e7cd 9da8cd9 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 a5e428f 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 ec7c10d d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 ad27ecb 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 ad27ecb 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 ec7c10d 63a1401 3f72150 d24f6e8 ec7c10d ce1e7cd ec7c10d d24f6e8 3f72150 d24f6e8 3f72150 d24f6e8 63a1401 d24f6e8 3f72150 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 ad27ecb d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 ad27ecb 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 ad27ecb 63a1401 d24f6e8 e157bd5 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 ad27ecb d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 d24f6e8 63a1401 ec7c10d d24f6e8 ad27ecb 63a1401 ad27ecb 9da8cd9 3f72150 9da8cd9 ce1e7cd 9da8cd9 e157bd5 9da8cd9 ce1e7cd 9da8cd9 ce1e7cd 9da8cd9 e157bd5 9da8cd9 e157bd5 9da8cd9 e157bd5 9da8cd9 e157bd5 9da8cd9 e157bd5 9da8cd9 e157bd5 d24f6e8 63a1401 3f72150 63a1401 e157bd5 63a1401 9da8cd9 63a1401 d24f6e8 9ba63d6 2924b58 9ba63d6 63a1401 98c5aed 2924b58 d24f6e8 0e76736 2924b58 9da8cd9 3f72150 63a1401 9da8cd9 63a1401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 |
import os
import time
from datetime import datetime
import logging
from pathlib import Path
import requests
import json
# import numpy as np
import pandas as pd
import spacy
from sentence_transformers import CrossEncoder
import litellm
# from litellm import completion
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig, pipeline
# from accelerate import PartialState
# from accelerate.inference import prepare_pippy
import torch
# import cohere
# from openai import OpenAI
# # import google
import google.generativeai as genai
import src.backend.util as util
import src.envs as envs
#
# # import pandas as pd
# import scipy
from scipy.spatial.distance import jensenshannon
from scipy.stats import bootstrap
import numpy as np
import spacy_transformers
import subprocess
# Run the command to download the spaCy model
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=True)
# subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
# subprocess.run(["pip", "install", "spacy-transformers"], check=True)
# subprocess.run(["pip", "install", "curated-transformers"], check=True)
# Load spacy model for word tokenization
# nlp = spacy.load("en_core_web_sm")
try:
nlp1 = spacy.load("en_core_web_lg")
except OSError:
print("Can not load spacy model")
# litellm.set_verbose=False
litellm.set_verbose=True
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
class ModelLoadingException(Exception):
"""Exception raised for errors in loading a model.
Attributes:
model_id (str): The model identifier.
revision (str): The model revision.
"""
def __init__(self, model_id, revision, messages="Error initializing model"):
self.model_id = model_id
self.revision = revision
super().__init__(f"{messages} id={model_id} revision={revision}")
class ResponseGenerator:
"""A class to generate responses using a causal language model.
Attributes:
model (str): huggingface/{model_id}
api_base (str): https://api-inference.huggingface.co/models/{model_id}
responses_df (DataFrame): DataFrame to store generated responses.
revision (str): Model revision.
avg_length (float): Average length of responses.
answer_rate (float): Rate of non-empty responses.
"""
def __init__(self, model_id, revision):
"""
Initializes the ResponseGenerator with a model.
Args:
model_id (str): Identifier for the model.
revision (str): Revision of the model.
"""
self.model_id = model_id
self.model = f"huggingface/{model_id}"
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
self.responses_df = pd.DataFrame()
self.revision = revision
self.avg_length = None
self.answer_rate = None
self.exceptions = None
self.local_model = None
def generate_response(self, dataset, df_prompt, save_path=None):
"""Generate responses for a given DataFrame of source docs.
Args:
dataset (DataFrame): DataFrame containing source docs.
Returns:
responses_df (DataFrame): Generated responses by the model.
"""
exceptions = []
if (save_path is not None) and os.path.exists(save_path):
'''已存在文件,可以读取已经存在的测试文本'''
self.responses_df = pd.read_csv(save_path)
# print(self.responses_df['Experiment'])
print(f'Loaded generated responses from {save_path}')
else:
'''测试文件不存在,则需要调用指定的模型来进行测试'''
# prompt = {}
# for index, row in tqdm(df_prompt.iterrows(), total=df_prompt.shape[0]):
# prompt['E' + row['Item']] = row['Prompt']
xls = pd.ExcelFile(dataset)
sheet_names = xls.sheet_names
# sheet_names = df.sheetnames
print(f"Total: {len(sheet_names)}")
print(sheet_names)
Experiment_ID, Questions_ID, Item_ID, Condition, User_prompt, Response, Factor_2, Stimuli_1 = [], [], [], [], [] ,[], [], []
exit_outer_loop = False # bad model
for i, sheet_name in enumerate(sheet_names, start=1):
if exit_outer_loop:
break
# 读取每个工作表
# if i > 2 and i ==1:
# continue
print(i, sheet_name)
df_sheet = pd.read_excel(xls, sheet_name=sheet_name)
# 假设第一列是'Prompt0',但这里我们使用列名来避免硬编码
if 'Prompt0' in df_sheet.columns:
prompt_column = df_sheet['Prompt0']
else:
# 如果'Prompt0'列不存在,则跳过该工作表或进行其他处理
continue
if i == 3 :
word1_list = df_sheet['Stimuli-2']
word2_list = df_sheet['Stimuli-3']
V2_column = []
for jj in range(len(word1_list)):
V2_column.append(word1_list[jj] + '_' + word2_list[jj])
# print(V2_column)
elif i == 9:
V2_column = df_sheet['V2'] #SL, LS
elif i == 4 or i == 6 :
V2_column = df_sheet['Stimuli-2'] #Stimuli-2
else:
V2_column = [""] * len(prompt_column)
q_column = df_sheet["ID"]
Item_column = df_sheet["Item"]
Condition_column = df_sheet["Condition"]
Stimuli_1_column = df_sheet["Stimuli-1"]
if 'Stimuli-2' in df_sheet.columns:
Stimuli_2_column = df_sheet["Stimuli-2"]
for j, prompt_value in enumerate(tqdm(prompt_column, desc=f"Processing {sheet_name}"), start=0):
if exit_outer_loop:
break
ID = 'E' + str(i)
# q_ID = ID + '_' + str(j)
# print(ID, q_ID, prompt_value)
system_prompt = envs.SYSTEM_PROMPT
_user_prompt = prompt_value
for ii in range(10):
# user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
while True:
try:
'''调用'''
print(self.model_id.lower(),'-',ID,'-',j,'-',ii)
_response = self.send_request(system_prompt, _user_prompt)
# print(f"Finish index {index}")
break
except Exception as e:
if 'Rate limit reached' in str(e):
wait_time = 3660
current_time = datetime.now().strftime('%H:%M:%S')
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
time.sleep(wait_time)
elif 'is currently loading' in str(e):
wait_time = 200
print(f"Model is loading, wait for {wait_time}")
time.sleep(wait_time)
elif '429 Resource has been exhausted' in str(e): # for gemini models
wait_time = 60
print(f"Quota has reached, wait for {wait_time}")
time.sleep(wait_time)
else:
max_retries = 30
retries = 0
wait_time = 120
while retries < max_retries:
print(f"Error at index {i}: {e}")
time.sleep(wait_time)
try:
_response = self.send_request(system_prompt, _user_prompt)
break
except Exception as ee:
exceptions.append(ee)
retries += 1
print(f"Retry {retries}/{max_retries} failed at index {i}: {ee}")
if retries >= max_retries:
exit_outer_loop = True
break
if exit_outer_loop:
break
if i == 5:
#print(_response)
# For E5, the responses might be in the following formats:
# "Sure\n\nThe first sentence of the response\n\nThe second sentence of the response"
# "The first sentence of the response\n\nThe second sentence of the response"
# "XXX: The first sentence of the response\n\nXXX: The second sentence of the response"
# "Sure\n\nXXX: The first sentence of the response\n\nXXX: The second sentence of the response"
# "Sure\n\nThe first sentence of the response\n\nThe second sentence of the response\n\n"
def extract_responses(text, trigger_words=None):
if trigger_words is None:
trigger_words = ["sure", "okay", "yes"]
try:
# Split the text into sentences
sentences = text.split('\n')
# Remove empty sentences
sentences = [sentence.strip() for sentence in sentences if sentence.strip()]
# Remove the first sentence if it has a : in it,
sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence for
sentence in sentences]
# Remove empty sentences
sentences = [sentence.strip() for sentence in sentences if sentence.strip()]
# Remove the first sentence if it is a trigger word
if any(sentences[0].lower().startswith(word) for word in trigger_words) and len(
sentences) > 2:
_response1 = sentences[1].strip() if len(sentences) > 1 else None
_response2 = sentences[2].strip() if len(sentences) > 2 else None
else:
_response1 = sentences[0].strip() if len(sentences) > 0 else None
_response2 = sentences[1].strip() if len(sentences) > 1 else None
except Exception as e:
print(f"Error occurred: {e}")
_response1, _response2 = None, None
print(_response1), print(_response2)
return _response1, _response2
_response1, _response2 = extract_responses(_response)
Experiment_ID.append(ID)
Questions_ID.append(q_column[j])
User_prompt.append(_user_prompt)
Response.append(_response2)
Factor_2.append(_response)
Stimuli_1.append(Stimuli_2_column[j])
Item_ID.append(Item_column[j])
Condition.append(Condition_column[j])
# the first sentence in the response is saved as E51
Experiment_ID.append(ID + '1')
Questions_ID.append(str(q_column[j]) + '1')
User_prompt.append(_user_prompt)
Response.append(_response1)
Factor_2.append(_response)
Stimuli_1.append(Stimuli_1_column[j])
Item_ID.append(Item_column[j])
Condition.append(Condition_column[j])
else:
Experiment_ID.append(ID)
Questions_ID.append(q_column[j])
User_prompt.append(_user_prompt)
Response.append(_response)
if i == 6:
Factor_2.append(Condition_column[j])
Stimuli_1.append(V2_column[j])
else:
Factor_2.append(V2_column[j])
Stimuli_1.append(Stimuli_1_column[j])
Item_ID.append(Item_column[j])
Condition.append(Condition_column[j])
# Sleep to prevent hitting rate limits too frequently
time.sleep(1)
self.responses_df = pd.DataFrame(list(zip(Experiment_ID, Questions_ID, Item_ID, Condition, User_prompt, Response, Factor_2, Stimuli_1)),
columns=["Experiment", "Question_ID", "Item", "Condition", "User_prompt", "Response","Factor 2","Stimuli 1"])
if save_path is not None:
print(f'Save responses to {save_path}')
fpath = Path(save_path)
fpath.parent.mkdir(parents=True, exist_ok=True)
self.responses_df.to_csv(fpath)
self.exceptions = exceptions
# self._compute_avg_length()
# self._compute_answer_rate()
return self.responses_df
def send_request(self, system_prompt: str, user_prompt: str):
# Using Together AI API
using_together_api = False
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm']
for together_ai_api_model in together_ai_api_models:
if together_ai_api_model in self.model_id.lower():
#using_together_api = True
break
# print('适用哪一种LLM',together_ai_api_model , using_together_api)
# print(self.model_id.lower()) #meta-llama/llama-2-7b-chat-hf
# print('local',self.local_model) $None
# exit()
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
if using_together_api:
# suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
suffix = "chat/completions"
url = f"https://api.together.xyz/v1/{suffix}"
payload = {
"model": self.model_id,
# "max_tokens": 4096,
'max_new_tokens': 100,
# "a": 0.0,
# 'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
}
payload['messages'] = [{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}]
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
}
response = requests.post(url, json=payload, headers=headers)
try:
result = json.loads(response.text)
# print(result)
result = result["choices"][0]
if 'message' in result:
result = result["message"]["content"].strip()
else:
result = result["text"]
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
result = result_candidates[0]
print(result)
except:
print(response)
result = ''
print(result)
return result
if self.local_model: # cannot call API. using local model
messages=[
{"role": "system", "content": system_prompt}, # gemma-1.1 does not accept system role
{"role": "user", "content": user_prompt}
]
try: # some models support pipeline
pipe = pipeline(
"text-generation",
model=self.local_model,
tokenizer=self.tokenizer,
)
generation_args = {
"max_new_tokens": 100,
"return_full_text": False,
#"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
result = output[0]['generated_text']
print(result)
except:
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
print(prompt)
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
with torch.no_grad():
outputs = self.local_model.generate(**input_ids, max_new_tokens=100, do_sample=True, pad_token_id=self.tokenizer.eos_token_id)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
result = result.replace(prompt[0], '')
print(result)
return result
# Using OpenAI API
elif 'gpt' in self.model_id.lower():
response = litellm.completion(
model=self.model_id.replace('openai/', ''),
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}],
# temperature=0.0,
max_tokens=100,
api_key=os.getenv('OpenAI_key')
)
result = response['choices'][0]['message']['content']
# print()
# print(result)
return result
elif self.local_model is None:
import random
def get_random_token():
i = random.randint(1, 20)
token = getattr(envs, f"TOKEN{i}")
return token, i
tokens_tried = set()
while len(tokens_tried) < 10:
token,i = get_random_token()
if token in tokens_tried:
continue
tokens_tried.add(token)
print(f"Trying with token: TOKEN{i}")
try:
from huggingface_hub import InferenceClient
client = InferenceClient(self.model_id, api_key=token, headers={"X-use-cache": "false"})
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}]
result = None
while result is None:
outputs = client.chat_completion(messages, max_tokens=100)
result = outputs['choices'][0]['message']['content']
if result is None:
time.sleep(1) # Optional: Add a small delay before retrying
return result
except Exception as e:
print(f"Error with token: {token}, trying another token...")
continue
raise Exception("All tokens failed.")
elif 'gemini' in self.model_id.lower():
genai.configure(api_key=os.getenv('GOOGLE_AI_API_KEY'))
generation_config = {
# "temperature": 0,
# "top_p": 0.95, # cannot change
# "top_k": 0,
"max_output_tokens": 100,
# "response_mime_type": "application/json",
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
model = genai.GenerativeModel(
model_name="gemini-1.5-pro-latest" if "gemini-1.5-pro" in self.model_id.lower() else
self.model_id.lower().split('google/')[-1],
generation_config=generation_config,
system_instruction=system_prompt,
safety_settings=safety_settings)
convo = model.start_chat(history=[])
convo.send_message(user_prompt)
# print(convo.last)
result = convo.last.text
print(result)
return result
# exit()
# Using local model
class EvaluationModel:
"""A class to evaluate generated responses.
Attributes:
model (CrossEncoder): The evaluation model.
scores (list): List of scores for the responses.
humanlike_score (float): Human-likeness score
"""
def __init__(self):
"""
Initializes the EvaluationModel.
"""
self.scores = []
self.humanlike_score = None
def code_results_llm(self, responses_df):
'''code results from LLM's response'''
output = []
'''database for Exp4'''
item4 = pd.read_csv(envs.ITEM_4_DATA)
wordpair2code = {}
for j in range(len(item4['Coding'])):
wordpair2code[item4['Pair'][j]] = item4['Coding'][j]
'''verb for Exp5'''
item5 = pd.read_csv(envs.ITEM_5_DATA)
# item corresponding to verb, same item id corresponding to verb pair
item2verb2 = {}
item2verb1 = {}
Stimuli1, Stimuli2 = {}, {}
for j in range(len(item5['Item'])):
item2verb1[item5['Item'][j]] = item5['Verb1'][j]
item2verb2[item5['Item'][j]] = item5['Verb2'][j]
Stimuli1[item5['ID'][j]] = item5['Stimuli-1'][j]
Stimuli2[item5['ID'][j]] = item5['Stimuli-2'][j]
male_keyword = ["he", "his", "himself"]
female_keyword = ["she", "her", "herself"]
#print(len(responses_df["Experiment"]))
for i in range(len(responses_df["Experiment"])):
print(i, "/", len(responses_df["Experiment"]))
# vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
# print()
if pd.isna(responses_df["Response"][i]):
output.append("Other")
continue
rs = responses_df["Response"][i].strip().lower()
rs = rs.replace('"', '').replace(" ", " ").replace('.', '')
lines = rs.split("\n")
filtered_lines = [line for line in lines if line and not (line.endswith(":") or line.endswith(":"))]
filtered_lines = [r.split(':', 1)[-1].strip() if ':' in r else r for
r in filtered_lines]
rs = "\n".join(filtered_lines)
rs = rs.strip()
'''Exp1'''
if responses_df["Experiment"][i] == "E1":
#print("E1", rs)
if rs == "round":
# vote_1_1 += 1
output.append("Round")
elif rs == "spiky":
output.append("Spiky")
else:
output.append("Other")
'''Exp2'''
elif responses_df["Experiment"][i] == "E2":
# rs = responses_df["Response"][i].strip()
rs = rs.split(' ')
#print("E2", rs)
male, female = 0, 0
for word in rs:
if word in female_keyword and male == 0:
female = 1
output.append("Female")
break
if word in male_keyword and female == 0:
male = 1
output.append("Male")
break
if male == 0 and female == 0:
output.append("Other")
'''Exp3'''
elif responses_df["Experiment"][i] == "E3":
# rs = responses_df["Response"][i].strip()
#print("E3", rs)
pair = responses_df["Factor 2"][i]
word1, word2 = pair.replace(".", "").split('_')
if responses_df["Item"][i] == 12:
output.append("Other")
else:
words = rs.split() # split the response into words
if any(word == word1 for word in words) and any(word == word2 for word in words):
output.append("Other")
else:
if any(word.lower() == word1.lower() for word in words):
if len(word1) > len(word2):
output.append("Long")
else:
output.append("Short")
elif any(word.lower() == word2.lower() for word in words):
if len(word1) > len(word2):
output.append("Short")
else:
output.append("Long")
else:
if len(words) > 1:
# joint the words using " "
word = " ".join(words)
if word.lower() == word1.lower():
if len(word1) > len(word2):
output.append("Long")
else:
output.append("Short")
elif word.lower() == word2.lower():
if len(word1) > len(word2):
output.append("Short")
else:
output.append("Long")
else:
output.append("Other")
else:
output.append("Other")
'''Exp4'''
elif responses_df["Experiment"][i] == "E4":
lines = rs.split("\n")
filtered_lines = []
if len(lines) > 1:
for r in lines[1:]:
if ':' in r:
filtered_lines.append(r.split(':', 1)[-1].strip())
else:
filtered_lines.append(r)
filtered_lines.insert(0, lines[0])
else:
filtered_lines = lines
# print(filtered_lines)
filtered_lines = [r.split('-', 1)[-1].strip() if '-' in r else r for r in filtered_lines]
rs = "\n".join(filtered_lines)
filtered_lines = [r.split(':', 1)[-1].strip() if ':' in r else r for r in rs.split(";")]
filtered_lines = [r.split('-', 1)[-1].strip() if '-' in r else r for r in filtered_lines]
rs = ";".join(filtered_lines).strip()
try:
meaning_word = rs.split(";")[4].replace(" ", '')
except IndexError:
try:
meaning_word = rs.split("\n")[4].replace(" ", '')
except IndexError:
output.append("Other")
continue
except Exception as e:
print(f"Unexpected error: {e}")
output.append("Other")
continue
target = responses_df["Factor 2"][i].strip().lower()
pair = target + "_" + meaning_word
#print("E4:", pair)
if pair in wordpair2code.keys():
output.append(wordpair2code[pair])
else:
output.append("Other")
'''Exp5'''
elif responses_df["Experiment"][i] == "E5" or responses_df["Experiment"][i] == "E51":
# sentence = responses_df["Response"][i].strip()
item_id = responses_df["Item"][i]
question_id = responses_df["Question_ID"][i]
sti1, sti2 = "", ""
if responses_df["Experiment"][i] == "E51":
sti1 = Stimuli1[question_id[0:-1]].lower().replace("...", "")
#sti2 = Stimuli2[question_id[0:-1]].lower().replace("...", "")
verb = item2verb1[item_id].lower()
sentence = sti1 + " " + rs.replace(sti1, "")
#print("E5", verb, sentence)
if responses_df["Experiment"][i] == "E5":
#sti1 = Stimuli1[question_id].lower().replace("...", "")
# print(sti1)
sti2 = Stimuli2[question_id].lower().replace("...", "")
verb = item2verb2[item_id].lower()
sentence = sti2 + " " + rs.replace(sti2, "")
#print("E5", verb, sentence)
doc = nlp1(sentence.replace(" ", " "))
# print(doc)
# print()
verb_token = None
for token in doc:
# print(token.lemma_)
if token.lemma_ == verb:
verb_token = token
break
# exit()
pobj, dative = None, None
# print(verb_token.children)
# exit()
if verb_token is not None:
for child in verb_token.children:
# print(child)
if (child.dep_ == 'dative' and child.pos_ == "ADP") or (
child.text == "to" and child.dep_ == 'prep' and child.pos_ == "ADP"):
pobj = child.text
if child.dep_ == 'dative':
dative = child.text
# print("E5", pobj, dative)
# exit()
if pobj:
output.append("PO")
elif dative:
output.append("DO")
else:
# print("Other", sentence, pobj, dative)
# exit()
output.append("Other")
'''Exp6'''
elif responses_df["Experiment"][i] == "E6":
sentence = responses_df["Stimuli 1"][i].strip().lower()
#print("E6", sentence)
doc = nlp1(sentence)
subject = "None"
obj = "None"
for token in doc:
if token.dep_ == "nsubj":
subject = token.text
elif token.dep_ == "dobj":
obj = token.text
#print("E6", subject, obj)
if subject in rs and obj in rs:
#print(rs, subject, obj, "Other")
output.append("Other")
elif subject in rs:
#print(rs, subject, obj, "VP")
output.append("VP")
elif obj in rs:
#print(rs, subject, obj, "NP")
output.append("NP")
else:
#print(rs, subject, obj, "Other")
output.append("Other")
'''Exp7'''
elif responses_df["Experiment"][i] == "E7":
# rs = responses_df["Response"][i].strip().lower()
rs = rs.replace(".", "").replace(",", "").lower()
#print("E7", rs)
if "yes" in rs and "no" in rs:
output.append("Other")
elif "no" in rs:
output.append("0")
elif "yes" in rs:
output.append("1")
else:
output.append("Other")
'''Exp8'''
elif responses_df["Experiment"][i] == "E8":
# rs = responses_df["Response"][i].strip()
#print("E8", rs)
if "something is wrong with the question" in rs:
output.append("1")
else:
output.append("0")
'''Exp9'''
elif responses_df["Experiment"][i] == "E9":
male, female = 0, 0
# rs = responses_df["Response"][i].strip()
if "because" in rs:
rs = rs.replace("because because", "because").split("because")[1]
else:
rs = rs
condition = responses_df["Factor 2"][i].strip()
rs = rs.split(" ")
for w in rs:
if w in male_keyword and female != 1:
male = 1
break
if w in female_keyword and male != 1:
female = 1
break
#print("E9", "condition", condition, "male", male, "female", female)
if male == 0 and female == 0:
output.append('Other')
else:
if male == 1 and female == 0:
if condition == "MF":
output.append("Subject")
elif condition == "FM":
output.append("Object")
else:
output.append("Other")
elif female == 1 and male == 0:
if condition == "MF":
output.append("Object")
elif condition == "FM":
output.append("Subject")
else:
output.append("Other")
'''Exp10'''
elif responses_df["Experiment"][i] == "E10":
# rs = responses_df["Response"][i].strip()
rs = rs.replace(".", "")
if rs == "yes":
output.append("1")
else:
output.append("0")
else:
#print("can;t find the Exp:", responses_df["Experiment"][i])
output.append("NA")
# print(output)
# exit()
'''LLM'''
print(len(output))
self.data = pd.DataFrame(list(
zip(responses_df["Experiment"], responses_df["Question_ID"], responses_df["Item"], responses_df["Response"],
responses_df["Factor 2"], responses_df["Stimuli 1"], output)),
columns=["Experiment", "Question_ID", "Item", "Response", "Factor 2", "Stimuli 1",
"Coding"])
return self.data
def calculate_js_divergence(self, file_path_1, file_path_2):
"""
Calculate the Jensen-Shannon divergence for response distributions between two datasets.
- Extracts E5 and E51 pairs, creates new data based on comparison,
removes the original E5 and E51, and then calculates the JS divergence between the datasets.
Parameters:
file_path_1 (str): Path to the first dataset file (Excel format).
file_path_2 (str): Path to the second dataset file (CSV format).
Returns:
float: The average JS divergence across all common Question_IDs.
"""
# Load the datasets
human_df = pd.read_csv(file_path_1, encoding='ISO-8859-1')
llm_df = pd.read_csv(file_path_2)
def create_e5_entries(df):
new_entries = []
for i in range(len(df) - 1):
if 'E51' in df.iloc[i]['Experiment']:
priming_id = df.iloc[i][0]-1
priming_row_id = df[df.iloc[:, 0] == priming_id].index[0]
new_question_id = df.iloc[priming_row_id]['Question_ID']
label = 1 if df.iloc[i]['Coding'] == df.iloc[priming_row_id]['Coding'] else 0
new_entries.append({
'Question_ID': new_question_id,
'Response': f'{df.iloc[i]["Coding"]}-{df.iloc[priming_row_id]["Coding"]}',
'Coding': label
})
return pd.DataFrame(new_entries)
# Create new E5 entries for both datasets
human_e5 = create_e5_entries(human_df)
llm_e5 = create_e5_entries(llm_df)
# Remove E5 and E51 entries from both datasets
human_df = human_df[~human_df['Question_ID'].str.contains('E5')]
llm_df = llm_df[~llm_df['Question_ID'].str.contains('E5')]
# Append new E5 entries to the cleaned dataframes
human_df = pd.concat([human_df, human_e5], ignore_index=True)
llm_df = pd.concat([llm_df, llm_e5], ignore_index=True)
### Calculate Average JS Divergence ###
# Extract the relevant columns for JS divergence calculation
human_responses = human_df[['Question_ID', 'Coding']]
llm_responses = llm_df[['Question_ID', 'Coding']]
# Remove 'Other' responses
human_responses = human_responses[human_responses['Coding'] != 'Other']
llm_responses = llm_responses[llm_responses['Coding'] != 'Other']
# Get unique Question_IDs present in both datasets
common_question_ids = set(human_responses['Question_ID']).intersection(set(llm_responses['Question_ID']))
# Initialize a dictionary to store JS divergence for each experiment
js_divergence = {}
# Calculate JS divergence for each common Question_ID
for q_id in common_question_ids:
# Get response distributions for the current Question_ID in both datasets
human_dist = human_responses[human_responses['Question_ID'] == q_id]['Coding'].value_counts(
normalize=True)
llm_dist = llm_responses[llm_responses['Question_ID'] == q_id]['Coding'].value_counts(normalize=True)
# Reindex the distributions to have the same index, filling missing values with 0
all_responses = set(human_dist.index).union(set(llm_dist.index))
human_dist = human_dist.reindex(all_responses, fill_value=0)
llm_dist = llm_dist.reindex(all_responses, fill_value=0)
# Calculate JS divergence
js_div = jensenshannon(human_dist, llm_dist, base=2)
experiment_id = q_id.split('_')[1]
if experiment_id not in js_divergence:
js_divergence[experiment_id] = []
js_divergence[experiment_id].append(js_div)
# Calculate the average JS divergence per experiment and the confidence interval
results = {}
for exp, divs in js_divergence.items():
avg_js_divergence = 1 - np.nanmean(divs)
ci_lower, ci_upper = bootstrap((divs,), np.nanmean, confidence_level=0.95,
n_resamples=1000).confidence_interval
results[exp] = {
'average_js_divergence': avg_js_divergence,
'confidence_interval': (1 - ci_upper, 1 - ci_lower) # Adjust for 1 - score
}
# Calculate the overall average JS divergence and confidence interval
overall_js_divergence = 1 - np.nanmean([js for divs in js_divergence.values() for js in divs])
flattened_js_divergence = np.concatenate([np.array(divs) for divs in js_divergence.values()])
# 计算总体的置信区间
overall_ci_lower, overall_ci_upper = bootstrap(
(flattened_js_divergence,),
np.nanmean,
confidence_level=0.95,
n_resamples=1000
).confidence_interval
# Combine all results into one dictionary
all_results = {
'overall': {
'average_js_divergence': overall_js_divergence,
'confidence_interval': (1 - overall_ci_upper, 1 - overall_ci_lower)
},
'per_experiment': results
}
return all_results
def evaluate_humanlike(self, responses_df: pd.DataFrame, human_data_path: object, result_save_path: str) -> object:
'''
evaluate humanlike score
1. code the result
2. comput the similaritirs between human and model
process model responses'''
'''coding human data'''
# self.huamn_df = pd.read_csv(human_data_path)
# self.data = self.code_results(self.huamn_df)
#save_path = human_data_path.replace('.csv','_coding.csv')
#human_save_path = "./src/datasets/coding_human.xlsx"
# if save_path is not None:
# print(f'Save human coding results to {save_path}')
# fpath = Path(save_path)
# fpath.parent.mkdir(parents=True, exist_ok=True)
# self.data.to_csv(fpath)
'''coding llm data'''
save_path = result_save_path.replace('.csv','_coding.csv')
self.llm_df = self.code_results_llm(responses_df)
if save_path is not None:
print(f'Save LLM coding results to {save_path}')
fpath = Path(save_path)
fpath.parent.mkdir(parents=True, exist_ok=True)
self.llm_df.to_csv(fpath)
envs.API.upload_file(
path_or_fileobj=save_path,#./generation_results/meta-llama/Llama-2-13b-chat-hf_coding.csv
path_in_repo=f"{save_path.replace('generation_results/','')}",#
repo_id=envs.RESULTS_REPO,
repo_type="dataset",
)
# file_path_1 = '/Users/simon/Downloads/coding_human.xlsx'
# file_path_2 = '/Users/simon/Downloads/Meta-Llama-3.1-70B-Instruct_coding.csv'
avg_js_divergence = self.calculate_js_divergence(human_data_path, save_path)
return avg_js_divergence
|