File size: 28,253 Bytes
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
068485c
1919c24
 
 
 
 
 
 
 
 
 
 
cf4ff34
 
 
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245425
83c1c51
ef745b2
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245425
83c1c51
037f66b
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c1c51
1919c24
 
 
83c1c51
1919c24
 
 
 
 
 
 
 
83c1c51
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c1c51
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c1c51
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f673990
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c1c51
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c1c51
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e90824
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f673990
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
f673990
1919c24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e5473e
1919c24
 
1245425
 
 
 
 
 
1919c24
1245425
 
 
 
 
 
1919c24
 
 
 
 
8ece0c4
 
 
1919c24
 
ef745b2
1919c24
 
 
 
 
 
 
 
 
 
 
699dc3f
 
3182286
1919c24
3182286
1919c24
 
3182286
1919c24
3182286
1919c24
 
3182286
1919c24
 
 
3182286
1919c24
3182286
1919c24
 
 
3182286
 
 
 
 
 
 
1919c24
3182286
1919c24
 
 
 
 
 
3182286
 
1919c24
 
 
 
3182286
 
 
 
 
 
 
 
 
 
 
 
1919c24
3182286
 
 
 
 
1919c24
 
 
3182286
1919c24
3182286
1919c24
 
3182286
 
1919c24
 
3182286
 
 
 
045de5b
32b020a
045de5b
 
 
 
1919c24
3182286
 
1919c24
 
 
 
 
 
 
3182286
 
1919c24
 
3182286
 
1919c24
3182286
1919c24
 
 
 
 
 
 
991ce9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
import gradio as gr
import torch
import cv2
import numpy as np
import mediapipe as mp
import matplotlib.pyplot as plt
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionControlNetInpaintPipeline
from transformers import AutoTokenizer
import base64
import requests
import json
from rembg import remove
from scipy import ndimage
from moviepy.editor import ImageSequenceClip
from tqdm import tqdm
import os
import shutil
import time
from huggingface_hub import snapshot_download
import subprocess
import sys


def download_liveportrait():
    """
    Clone the LivePortrait repository and prepare its dependencies.
    """
    liveportrait_path = "./LivePortrait"
    try:
        if not os.path.exists(liveportrait_path):
            print("Cloning LivePortrait repository...")
            os.system(f"git clone https://github.com/KwaiVGI/LivePortrait.git {liveportrait_path}")
        
        # 安装依赖
        os.chdir(liveportrait_path)
        print("Installing LivePortrait dependencies...")
        os.system("pip install -r requirements.txt")
        
        # 构建 MultiScaleDeformableAttention 模块
        dependency_path = "src/utils/dependencies/XPose/models/UniPose/ops"
        os.chdir(dependency_path)
        print("Building MultiScaleDeformableAttention...")
        os.system("python setup.py build")
        os.system("python setup.py install")
        
        # 确保模块路径可用
        module_path = os.path.abspath(dependency_path)
        if module_path not in sys.path:
            sys.path.append(module_path)
        
        # 返回 LivePortrait 目录
        os.chdir("../../../../../../../")
        print("LivePortrait setup completed")
    except Exception as e:
        print("Failed to initialize LivePortrait:", e)
        raise
download_liveportrait()


def download_huggingface_resources():
    """
    Download additional necessary resources from Hugging Face using the CLI.
    """
    try:
        local_dir = "./pretrained_weights"
        os.makedirs(local_dir, exist_ok=True)

        # Use the Hugging Face CLI for downloading
        cmd = [
            "huggingface-cli", "download",
            "KwaiVGI/LivePortrait",
            "--local-dir", local_dir,
            "--exclude", "*.git*", "README.md", "docs"
        ]
        print("Executing command:", " ".join(cmd))
        subprocess.run(cmd, check=True)

        print("Resources successfully downloaded to:", local_dir)
    except subprocess.CalledProcessError as e:
        print("Error during Hugging Face CLI download:", e)
        raise
    except Exception as e:
        print("General error in downloading resources:", e)
        raise

download_huggingface_resources()


def get_project_root():
    """Get the root directory of the current project."""
    return os.path.abspath(os.path.dirname(__file__))

# Ensure working directory is project root
os.chdir(get_project_root())

# Initialize the necessary models and components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils

# Load ControlNet model
controlnet = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-openpose', torch_dtype=torch.float16)

# Load Stable Diffusion model with ControlNet
pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
    'runwayml/stable-diffusion-v1-5',
    controlnet=controlnet,
    torch_dtype=torch.float16
)

# Load Inpaint Controlnet
pipe_inpaint_controlnet = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    controlnet=controlnet,
    torch_dtype=torch.float16
)

# Move to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pipe_controlnet.to(device)
pipe_controlnet.enable_attention_slicing()
pipe_inpaint_controlnet.to(device)
pipe_inpaint_controlnet.enable_attention_slicing()


def resize_to_multiple_of_64(width, height):
    return (width // 64) * 64, (height // 64) * 64


def expand_mask(mask, kernel_size):
    mask_array = np.array(mask)
    structuring_element = np.ones((kernel_size, kernel_size), dtype=np.uint8)
    expanded_mask_array = ndimage.binary_dilation(
        mask_array, structure=structuring_element
    ).astype(np.uint8) * 255
    return Image.fromarray(expanded_mask_array)


def crop_face_to_square(image_rgb, padding_ratio=0.2):
    """
    Detects the face in the input image and crops an enlarged square region around it.
    """
    face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
    gray_image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
    faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

    if len(faces) == 0:
        print("No face detected.")
        return None

    x, y, w, h = faces[0]
    center_x, center_y = x + w // 2, y + h // 2
    side_length = max(w, h)
    padded_side_length = int(side_length * (1 + padding_ratio))
    half_side = padded_side_length // 2

    top_left_x = max(center_x - half_side, 0)
    top_left_y = max(center_y - half_side, 0)
    bottom_right_x = min(center_x + half_side, image_rgb.shape[1])
    bottom_right_y = min(center_y + half_side, image_rgb.shape[0])

    cropped_image = image_rgb[top_left_y:bottom_right_y, top_left_x:bottom_right_x]
    resized_image = cv2.resize(cropped_image, (768, 768), interpolation=cv2.INTER_AREA)

    return resized_image


def spirit_animal_baseline(image_path, num_images = 4):

    image = cv2.imread(image_path)
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    image_rgb = crop_face_to_square(image_rgb)

    original_height, original_width, _ = image_rgb.shape
    aspect_ratio = original_width / original_height

    if aspect_ratio > 1:
        gen_width = 768
        gen_height = int(gen_width / aspect_ratio)
    else:
        gen_height = 768
        gen_width = int(gen_height * aspect_ratio)

    gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)

    with mp_pose.Pose(static_image_mode=True) as pose:
        results = pose.process(image_rgb)

        if results.pose_landmarks:
            annotated_image = image_rgb.copy()
            mp_drawing.draw_landmarks(
                annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
            )
        else:
            print("No pose detected.")
            return "No pose detected.", []

    pose_image = np.zeros_like(image_rgb)
    for connection in mp_pose.POSE_CONNECTIONS:
        start_idx, end_idx = connection
        start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
        if start.visibility > 0.5 and end.visibility > 0.5:
            x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
            x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
            cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)

    pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))

    base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
    api_key = "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"
    headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
    payload = {
        "model": "gpt-4o-mini",
        "messages": [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "Based on the provided image, think of one spirit animal that is right for the person, and answer in the following format: An ultra-realistic, highly detailed photograph of a single {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate one sentence without any other responses or numbering."},
                    {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
                ]
            }
        ],
        "max_tokens": 100
    }

    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
    prompt = response.json()['choices'][0]['message']['content'] if 'choices' in response.json() else "A majestic animal"

    num_images = num_images
    generated_images = []
    with torch.no_grad():
        with torch.autocast(device_type=device.type):
            for _ in range(num_images):
                images = pipe_controlnet(
                    prompt=prompt,
                    negative_prompt="multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, blurry",
                    num_inference_steps=20,
                    image=pose_pil,
                    guidance_scale=5,
                    width=gen_width,
                    height=gen_height,
                ).images
                generated_images.append(images[0])

    return prompt, generated_images


def spirit_animal_with_background(image_path, num_images = 4):

    image = cv2.imread(image_path)
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # image_rgb = crop_face_to_square(image_rgb)

    original_height, original_width, _ = image_rgb.shape
    aspect_ratio = original_width / original_height

    if aspect_ratio > 1:
        gen_width = 768
        gen_height = int(gen_width / aspect_ratio)
    else:
        gen_height = 768
        gen_width = int(gen_height * aspect_ratio)

    gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)

    with mp_pose.Pose(static_image_mode=True) as pose:
        results = pose.process(image_rgb)

        if results.pose_landmarks:
            annotated_image = image_rgb.copy()
            mp_drawing.draw_landmarks(
                annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
            )
        else:
            print("No pose detected.")
            return "No pose detected.", []

    pose_image = np.zeros_like(image_rgb)
    for connection in mp_pose.POSE_CONNECTIONS:
        start_idx, end_idx = connection
        start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
        if start.visibility > 0.5 and end.visibility > 0.5:
            x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
            x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
            cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)

    pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))

    base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
    api_key = "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"
    headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
    payload = {
        "model": "gpt-4o-mini",
        "messages": [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "Based on the provided image, think of one spirit animal that is right for the person, and answer in the following format: An ultra-realistic, highly detailed photograph of a single {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate one sentence without any other responses or numbering."},
                    {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
                ]
            }
        ],
        "max_tokens": 100
    }

    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
    prompt = response.json()['choices'][0]['message']['content'] if 'choices' in response.json() else "A majestic animal"

    mask_image = remove(Image.fromarray(image_rgb))
    initial_mask = mask_image.split()[-1].convert('L')

    kernel_size = min(gen_width, gen_height) // 15
    expanded_mask = expand_mask(initial_mask, kernel_size)

    num_images = num_images
    generated_images = []
    with torch.no_grad():
        with torch.autocast(device_type=device.type):
            for _ in range(num_images):
                images = pipe_inpaint_controlnet(
                    prompt=prompt,
                    negative_prompt="multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, blurry",
                    num_inference_steps=20,
                    image=Image.fromarray(image_rgb),
                    mask_image=expanded_mask,
                    control_image=pose_pil,
                    width=gen_width,
                    height=gen_height,
                    guidance_scale=5,
                ).images
                generated_images.append(images[0])

    return prompt, generated_images


def generate_multiple_animals(image_path, keep_background=True, num_images = 4):

    image = cv2.imread(image_path)
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    image_rgb = crop_face_to_square(image_rgb)

    original_image = Image.fromarray(image_rgb)
    original_width, original_height = original_image.size

    aspect_ratio = original_width / original_height
    if aspect_ratio > 1:
        gen_width = 768
        gen_height = int(gen_width / aspect_ratio)
    else:
        gen_height = 768
        gen_width = int(gen_height * aspect_ratio)

    gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)

    base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
    api_key = "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"
    headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
    payload = {
        "model": "gpt-4o-mini",
        "messages": [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": "Based on the provided image, think of " + str(num_images) + " different spirit animals that are right for the person, and answer in the following format for each: An ultra-realistic, highly detailed photograph of a {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate these sentences without any other responses or numbering. For the animal choose between owl, bear, fox, koala, lion, dog"
                    },
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}
                    }
                ]
            }
        ],
        "max_tokens": 500
    }

    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
    response_json = response.json()

    if 'choices' in response_json and len(response_json['choices']) > 0:
      content = response_json['choices'][0]['message']['content']
      prompts = [prompt.strip() for prompt in content.strip().split('.') if prompt.strip()]
      negative_prompt = (
          "multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, "
          "blurry, deformed, text, watermark, logo, low resolution"
      )
      formatted_prompts = "\n".join(f"{i+1}. {prompt}" for i, prompt in enumerate(prompts))

    with mp_pose.Pose(static_image_mode=True) as pose:
        results = pose.process(image_rgb)

        if results.pose_landmarks:
            annotated_image = image_rgb.copy()
            mp_drawing.draw_landmarks(
                annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
            )
        else:
            print("No pose detected.")
            return "No pose detected.", []

    pose_image = np.zeros_like(image_rgb)
    for connection in mp_pose.POSE_CONNECTIONS:
        start_idx, end_idx = connection
        start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
        if start.visibility > 0.5 and end.visibility > 0.5:
            x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
            x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
            cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)

    pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))

    if keep_background:
        mask_image = remove(original_image)
        initial_mask = mask_image.split()[-1].convert('L')
        expanded_mask = expand_mask(initial_mask, kernel_size=min(gen_width, gen_height) // 15)
    else:
        expanded_mask = None

    generated_images = []

    if keep_background:
        with torch.no_grad():
            with torch.amp.autocast("cuda"):
                for prompt in prompts:
                    images = pipe_inpaint_controlnet(
                        prompt=prompt,
                        negative_prompt=negative_prompt,
                        num_inference_steps=20,
                        image=Image.fromarray(image_rgb),
                        mask_image=expanded_mask,
                        control_image=pose_pil,
                        width=gen_width,
                        height=gen_height,
                        guidance_scale=5,
                    ).images
                    generated_images.append(images[0])
    else:
        with torch.no_grad():
            with torch.amp.autocast("cuda"):
                for prompt in prompts:
                    images = pipe_controlnet(
                        prompt=prompt,
                        negative_prompt=negative_prompt,
                        num_inference_steps=20,
                        image=pose_pil,
                        guidance_scale=5,
                        width=gen_width,
                        height=gen_height,
                    ).images
                    generated_images.append(images[0])

    return formatted_prompts, generated_images


def wait_for_file(file_path, timeout=500):
    """
    Wait for a file to be created, with a specified timeout.
    Args:
        file_path (str): The path of the file to wait for.
        timeout (int): Maximum time to wait in seconds.
    Returns:
        bool: True if the file is created, False if timeout occurs.
    """
    start_time = time.time()
    while not os.path.exists(file_path):
        if time.time() - start_time > timeout:
            return False
        time.sleep(0.5)  # Check every 0.5 seconds
    return True


def generate_spirit_animal_video(driving_video_path):
    os.chdir(".")
    try:
        # Step 1: Extract the first frame
        cap = cv2.VideoCapture(driving_video_path)
        if not cap.isOpened():
            print("Error: Unable to open video.")
            return None

        ret, frame = cap.read()
        cap.release()
        if not ret:
            print("Error: Unable to read the first frame.")
            return None

        # Save the first frame
        first_frame_path = "./first_frame.jpg"
        cv2.imwrite(first_frame_path, frame)
        print(f"First frame saved to: {first_frame_path}")

        # Generate spirit animal image
        _, input_image = generate_multiple_animals(first_frame_path, True, 1)
        if input_image is None or not input_image:
            print("Error: Spirit animal generation failed.")
            return None

        spirit_animal_path = "./animal.jpeg"
        cv2.imwrite(spirit_animal_path, cv2.cvtColor(np.array(input_image[0]), cv2.COLOR_RGB2BGR))
        print(f"Spirit animal image saved to: {spirit_animal_path}")

        # Step 3: Run inference
        output_path = "./animations/animal--uploaded_video_compressed.mp4"
        script_path = os.path.abspath("./LivePortrait/inference_animals.py")

        if not os.path.exists(script_path):
            print(f"Error: Inference script not found at {script_path}.")
            return None

        command = f"python {script_path} -s {spirit_animal_path} -d {driving_video_path} --driving_multiplier 1.75 --no_flag_stitching"
        print(f"Running command: {command}")
        result = os.system(command)

        if result != 0:
            print(f"Error: Command failed with exit code {result}.")
            return None

        # Verify output file exists
        if not os.path.exists(output_path):
            print(f"Error: Expected output video not found at {output_path}.")
            return None

        print(f"Output video generated at: {output_path}")
        return output_path
    except Exception as e:
        print(f"Error occurred: {e}")
        return None


def generate_spirit_animal(image, animal_type, background):
    if animal_type == "Single Animal":
        if background == "Preserve Background":
            prompt, generated_images = spirit_animal_with_background(image)
        else:
            prompt, generated_images = spirit_animal_baseline(image)
    elif animal_type == "Multiple Animals":
        if background == "Preserve Background":
            prompt, generated_images = generate_multiple_animals(image, keep_background=True)
        else:
            prompt, generated_images = generate_multiple_animals(image, keep_background=False)
    return prompt, generated_images


def compress_video(input_path, output_path, target_size_mb):
    target_size_bytes = target_size_mb * 1024 * 1024
    temp_output = "./temp_compressed.mp4"

    cap = cv2.VideoCapture(input_path)
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # 使用 mp4 编码
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    writer = cv2.VideoWriter(temp_output, fourcc, fps, (width, height))
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        writer.write(frame)

    cap.release()
    writer.release()

    current_size = os.path.getsize(temp_output)
    if current_size > target_size_bytes:
        bitrate = int(target_size_bytes * 8 / (current_size / target_size_bytes))  # 按比例缩减比特率
        os.system(f"ffmpeg -i {temp_output} -b:v {bitrate} -y {output_path}")
        os.remove(temp_output)
    else:
        shutil.move(temp_output, output_path)


def process_video(video_file):
    
    # # 初始化 LivePortrait
    # try:
    #     download_liveportrait()
    # except Exception as e:
    #     print("Failed to initialize LivePortrait:", e)
    #     return gr.update(value=None, visible=False)
    
    #     # 下载 Hugging Face 资源
    # try:
    #     download_huggingface_resources()
    # except Exception as e:
    #     print("Failed to download Hugging Face resources:", e)
    #     return gr.update(value=None, visible=False)
    
    compressed_path = "./uploaded_video_compressed.mp4"
    compress_video(video_file, compressed_path, target_size_mb=1)
    print(f"Compressed and moved video to: {compressed_path}")

    output_video_path = "./animations/animal--uploaded_video_compressed.mp4"
    
    generate_spirit_animal_video(compressed_path)

    # Wait until the output video is generated
    timeout = 1000  # Timeout in seconds
    if not wait_for_file(output_video_path, timeout=timeout):
        print("Timeout occurred while waiting for video generation.")
        return gr.update(value=None, visible=False)  # Hide output if failed

    # Return the generated video path
    print(f"Output video is ready: {output_video_path}")
    return gr.update(value=output_video_path, visible=True)  # Show video


# Custom CSS styling for the interface
css = """
#title-container {
    font-family: 'Arial', sans-serif;
    color: #4a4a4a;
    text-align: center;
    margin-bottom: 20px;
}
#title-container h1 {
    font-size: 2.5em;
    font-weight: bold;
    color: #ff9900;
}
#title-container h2 {
    font-size: 1.2em;
    color: #6c757d;
}
#intro-text {
    font-size: 1em;
    color: #6c757d;
    margin: 50px;
    text-align: center;
    font-style: italic;
}
#prompt-output {
    font-family: 'Courier New', monospace;
    color: #5a5a5a;
    font-size: 1.1em;
    padding: 10px;
    background-color: #f9f9f9;
    border: 1px solid #ddd;
    border-radius: 5px;
    margin-top: 10px;
}
"""

# Title and description
title_html = """
<div id="title-container">
    <h1>Spirit Animal Generator</h1>
    <h2>Create your unique spirit animal with AI-assisted image generation.</h2>
</div>
"""

description_text = """
### Project Overview
Welcome to the Spirit Animal Generator! This tool leverages advanced AI technologies to create unique visualizations of spirit animals from both videos and images.
#### Key Features:
1. **Video Transformation**: Upload a driving video to generate a creative spirit animal animation.
2. **Image Creation**: Upload an image and customize the spirit animal type and background options.
3. **AI-Powered Prompting**: OpenAI's GPT generates descriptive prompts for each input.
4. **High-Quality Outputs**: Generated using Stable Diffusion and ControlNet for stunning visuals.
---
### How It Works:
1. **Upload Your Media**:
   - Videos: Ensure the file is in MP4 format.
   - Images: Use clear, high-resolution photos for better results.
2. **Customize Options**:
   - For images, select the type of animal and background settings.
3. **View Your Results**:
   - Videos will be transformed into animations.
   - Images will produce customized visual art along with a generated prompt.
Discover your spirit animal and let your imagination run wild!
---
"""

with gr.Blocks() as demo:
    gr.HTML(title_html)
    gr.Markdown(description_text)

    with gr.Tabs():
        with gr.Tab("Generate Spirit Animal Image"):
            gr.Markdown("Upload an image to generate a spirit animal.")
            with gr.Row():
                with gr.Column(scale=1):
                    image_input = gr.Image(type="filepath", label="Upload an image")
                    animal_type = gr.Radio(choices=["Single Animal", "Multiple Animals"], label="Animal Type", value="Single Animal")
                    background_option = gr.Radio(choices=["Preserve Background", "Don't Preserve Background"], label="Background Option", value="Preserve Background")
                    generate_image_button = gr.Button("Generate Image")
                    gr.Examples(
                        examples=["example1.jpg", "example2.jpg", "example3.jpg"],
                        inputs=image_input,
                        label="Example Images"
                    )
                    
                with gr.Column(scale=1):
                    generated_prompt = gr.Textbox(label="Generated Prompt")
                    generated_gallery = gr.Gallery(label="Generated Images")

            generate_image_button.click(
                fn=generate_spirit_animal,
                inputs=[image_input, animal_type, background_option],
                outputs=[generated_prompt, generated_gallery],
            )

        with gr.Tab("Generate Spirit Animal Video"):
            gr.Markdown("Upload a driving video to generate a spirit animal video.")
            with gr.Row():
                with gr.Column(scale=1):
                    video_input = gr.Video(label="Upload a driving video (MP4 format)")
                    generate_video_button = gr.Button("Generate Video")
                with gr.Column(scale=1):
                    video_output = gr.Video(label="Generated Spirit Animal Video")

            generate_video_button.click(
                fn=process_video,
                inputs=video_input,
                outputs=video_output,
            )

demo.launch()