Spaces:
Running
on
T4
Running
on
T4
File size: 28,253 Bytes
1919c24 068485c 1919c24 cf4ff34 1919c24 1245425 83c1c51 ef745b2 1919c24 1245425 83c1c51 037f66b 1919c24 83c1c51 1919c24 83c1c51 1919c24 83c1c51 1919c24 83c1c51 1919c24 83c1c51 1919c24 f673990 1919c24 83c1c51 1919c24 83c1c51 1919c24 5e90824 1919c24 f673990 1919c24 f673990 1919c24 0e5473e 1919c24 1245425 1919c24 1245425 1919c24 8ece0c4 1919c24 ef745b2 1919c24 699dc3f 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 045de5b 32b020a 045de5b 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 3182286 1919c24 991ce9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
import gradio as gr
import torch
import cv2
import numpy as np
import mediapipe as mp
import matplotlib.pyplot as plt
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionControlNetInpaintPipeline
from transformers import AutoTokenizer
import base64
import requests
import json
from rembg import remove
from scipy import ndimage
from moviepy.editor import ImageSequenceClip
from tqdm import tqdm
import os
import shutil
import time
from huggingface_hub import snapshot_download
import subprocess
import sys
def download_liveportrait():
"""
Clone the LivePortrait repository and prepare its dependencies.
"""
liveportrait_path = "./LivePortrait"
try:
if not os.path.exists(liveportrait_path):
print("Cloning LivePortrait repository...")
os.system(f"git clone https://github.com/KwaiVGI/LivePortrait.git {liveportrait_path}")
# 安装依赖
os.chdir(liveportrait_path)
print("Installing LivePortrait dependencies...")
os.system("pip install -r requirements.txt")
# 构建 MultiScaleDeformableAttention 模块
dependency_path = "src/utils/dependencies/XPose/models/UniPose/ops"
os.chdir(dependency_path)
print("Building MultiScaleDeformableAttention...")
os.system("python setup.py build")
os.system("python setup.py install")
# 确保模块路径可用
module_path = os.path.abspath(dependency_path)
if module_path not in sys.path:
sys.path.append(module_path)
# 返回 LivePortrait 目录
os.chdir("../../../../../../../")
print("LivePortrait setup completed")
except Exception as e:
print("Failed to initialize LivePortrait:", e)
raise
download_liveportrait()
def download_huggingface_resources():
"""
Download additional necessary resources from Hugging Face using the CLI.
"""
try:
local_dir = "./pretrained_weights"
os.makedirs(local_dir, exist_ok=True)
# Use the Hugging Face CLI for downloading
cmd = [
"huggingface-cli", "download",
"KwaiVGI/LivePortrait",
"--local-dir", local_dir,
"--exclude", "*.git*", "README.md", "docs"
]
print("Executing command:", " ".join(cmd))
subprocess.run(cmd, check=True)
print("Resources successfully downloaded to:", local_dir)
except subprocess.CalledProcessError as e:
print("Error during Hugging Face CLI download:", e)
raise
except Exception as e:
print("General error in downloading resources:", e)
raise
download_huggingface_resources()
def get_project_root():
"""Get the root directory of the current project."""
return os.path.abspath(os.path.dirname(__file__))
# Ensure working directory is project root
os.chdir(get_project_root())
# Initialize the necessary models and components
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
# Load ControlNet model
controlnet = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-openpose', torch_dtype=torch.float16)
# Load Stable Diffusion model with ControlNet
pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5',
controlnet=controlnet,
torch_dtype=torch.float16
)
# Load Inpaint Controlnet
pipe_inpaint_controlnet = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
controlnet=controlnet,
torch_dtype=torch.float16
)
# Move to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pipe_controlnet.to(device)
pipe_controlnet.enable_attention_slicing()
pipe_inpaint_controlnet.to(device)
pipe_inpaint_controlnet.enable_attention_slicing()
def resize_to_multiple_of_64(width, height):
return (width // 64) * 64, (height // 64) * 64
def expand_mask(mask, kernel_size):
mask_array = np.array(mask)
structuring_element = np.ones((kernel_size, kernel_size), dtype=np.uint8)
expanded_mask_array = ndimage.binary_dilation(
mask_array, structure=structuring_element
).astype(np.uint8) * 255
return Image.fromarray(expanded_mask_array)
def crop_face_to_square(image_rgb, padding_ratio=0.2):
"""
Detects the face in the input image and crops an enlarged square region around it.
"""
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
gray_image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
if len(faces) == 0:
print("No face detected.")
return None
x, y, w, h = faces[0]
center_x, center_y = x + w // 2, y + h // 2
side_length = max(w, h)
padded_side_length = int(side_length * (1 + padding_ratio))
half_side = padded_side_length // 2
top_left_x = max(center_x - half_side, 0)
top_left_y = max(center_y - half_side, 0)
bottom_right_x = min(center_x + half_side, image_rgb.shape[1])
bottom_right_y = min(center_y + half_side, image_rgb.shape[0])
cropped_image = image_rgb[top_left_y:bottom_right_y, top_left_x:bottom_right_x]
resized_image = cv2.resize(cropped_image, (768, 768), interpolation=cv2.INTER_AREA)
return resized_image
def spirit_animal_baseline(image_path, num_images = 4):
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_rgb = crop_face_to_square(image_rgb)
original_height, original_width, _ = image_rgb.shape
aspect_ratio = original_width / original_height
if aspect_ratio > 1:
gen_width = 768
gen_height = int(gen_width / aspect_ratio)
else:
gen_height = 768
gen_width = int(gen_height * aspect_ratio)
gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)
with mp_pose.Pose(static_image_mode=True) as pose:
results = pose.process(image_rgb)
if results.pose_landmarks:
annotated_image = image_rgb.copy()
mp_drawing.draw_landmarks(
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
)
else:
print("No pose detected.")
return "No pose detected.", []
pose_image = np.zeros_like(image_rgb)
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
if start.visibility > 0.5 and end.visibility > 0.5:
x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)
pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))
base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
api_key = "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"
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
payload = {
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Based on the provided image, think of one spirit animal that is right for the person, and answer in the following format: An ultra-realistic, highly detailed photograph of a single {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate one sentence without any other responses or numbering."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
]
}
],
"max_tokens": 100
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
prompt = response.json()['choices'][0]['message']['content'] if 'choices' in response.json() else "A majestic animal"
num_images = num_images
generated_images = []
with torch.no_grad():
with torch.autocast(device_type=device.type):
for _ in range(num_images):
images = pipe_controlnet(
prompt=prompt,
negative_prompt="multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, blurry",
num_inference_steps=20,
image=pose_pil,
guidance_scale=5,
width=gen_width,
height=gen_height,
).images
generated_images.append(images[0])
return prompt, generated_images
def spirit_animal_with_background(image_path, num_images = 4):
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# image_rgb = crop_face_to_square(image_rgb)
original_height, original_width, _ = image_rgb.shape
aspect_ratio = original_width / original_height
if aspect_ratio > 1:
gen_width = 768
gen_height = int(gen_width / aspect_ratio)
else:
gen_height = 768
gen_width = int(gen_height * aspect_ratio)
gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)
with mp_pose.Pose(static_image_mode=True) as pose:
results = pose.process(image_rgb)
if results.pose_landmarks:
annotated_image = image_rgb.copy()
mp_drawing.draw_landmarks(
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
)
else:
print("No pose detected.")
return "No pose detected.", []
pose_image = np.zeros_like(image_rgb)
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
if start.visibility > 0.5 and end.visibility > 0.5:
x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)
pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))
base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
api_key = "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"
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
payload = {
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Based on the provided image, think of one spirit animal that is right for the person, and answer in the following format: An ultra-realistic, highly detailed photograph of a single {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate one sentence without any other responses or numbering."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
]
}
],
"max_tokens": 100
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
prompt = response.json()['choices'][0]['message']['content'] if 'choices' in response.json() else "A majestic animal"
mask_image = remove(Image.fromarray(image_rgb))
initial_mask = mask_image.split()[-1].convert('L')
kernel_size = min(gen_width, gen_height) // 15
expanded_mask = expand_mask(initial_mask, kernel_size)
num_images = num_images
generated_images = []
with torch.no_grad():
with torch.autocast(device_type=device.type):
for _ in range(num_images):
images = pipe_inpaint_controlnet(
prompt=prompt,
negative_prompt="multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, blurry",
num_inference_steps=20,
image=Image.fromarray(image_rgb),
mask_image=expanded_mask,
control_image=pose_pil,
width=gen_width,
height=gen_height,
guidance_scale=5,
).images
generated_images.append(images[0])
return prompt, generated_images
def generate_multiple_animals(image_path, keep_background=True, num_images = 4):
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_rgb = crop_face_to_square(image_rgb)
original_image = Image.fromarray(image_rgb)
original_width, original_height = original_image.size
aspect_ratio = original_width / original_height
if aspect_ratio > 1:
gen_width = 768
gen_height = int(gen_width / aspect_ratio)
else:
gen_height = 768
gen_width = int(gen_height * aspect_ratio)
gen_width, gen_height = resize_to_multiple_of_64(gen_width, gen_height)
base64_image = base64.b64encode(cv2.imencode('.jpg', image_rgb)[1]).decode()
api_key = "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"
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
payload = {
"model": "gpt-4o-mini",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Based on the provided image, think of " + str(num_images) + " different spirit animals that are right for the person, and answer in the following format for each: An ultra-realistic, highly detailed photograph of a {animal} with facial features characterized by {description}, standing upright in a human-like pose, looking directly at the camera, against a solid, neutral background. Generate these sentences without any other responses or numbering. For the animal choose between owl, bear, fox, koala, lion, dog"
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}
}
]
}
],
"max_tokens": 500
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
response_json = response.json()
if 'choices' in response_json and len(response_json['choices']) > 0:
content = response_json['choices'][0]['message']['content']
prompts = [prompt.strip() for prompt in content.strip().split('.') if prompt.strip()]
negative_prompt = (
"multiple heads, extra limbs, duplicate faces, mutated anatomy, disfigured, "
"blurry, deformed, text, watermark, logo, low resolution"
)
formatted_prompts = "\n".join(f"{i+1}. {prompt}" for i, prompt in enumerate(prompts))
with mp_pose.Pose(static_image_mode=True) as pose:
results = pose.process(image_rgb)
if results.pose_landmarks:
annotated_image = image_rgb.copy()
mp_drawing.draw_landmarks(
annotated_image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS
)
else:
print("No pose detected.")
return "No pose detected.", []
pose_image = np.zeros_like(image_rgb)
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
start, end = results.pose_landmarks.landmark[start_idx], results.pose_landmarks.landmark[end_idx]
if start.visibility > 0.5 and end.visibility > 0.5:
x1, y1 = int(start.x * pose_image.shape[1]), int(start.y * pose_image.shape[0])
x2, y2 = int(end.x * pose_image.shape[1]), int(end.y * pose_image.shape[0])
cv2.line(pose_image, (x1, y1), (x2, y2), (255, 255, 255), 2)
pose_pil = Image.fromarray(cv2.resize(pose_image, (gen_width, gen_height), interpolation=cv2.INTER_LANCZOS4))
if keep_background:
mask_image = remove(original_image)
initial_mask = mask_image.split()[-1].convert('L')
expanded_mask = expand_mask(initial_mask, kernel_size=min(gen_width, gen_height) // 15)
else:
expanded_mask = None
generated_images = []
if keep_background:
with torch.no_grad():
with torch.amp.autocast("cuda"):
for prompt in prompts:
images = pipe_inpaint_controlnet(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
image=Image.fromarray(image_rgb),
mask_image=expanded_mask,
control_image=pose_pil,
width=gen_width,
height=gen_height,
guidance_scale=5,
).images
generated_images.append(images[0])
else:
with torch.no_grad():
with torch.amp.autocast("cuda"):
for prompt in prompts:
images = pipe_controlnet(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
image=pose_pil,
guidance_scale=5,
width=gen_width,
height=gen_height,
).images
generated_images.append(images[0])
return formatted_prompts, generated_images
def wait_for_file(file_path, timeout=500):
"""
Wait for a file to be created, with a specified timeout.
Args:
file_path (str): The path of the file to wait for.
timeout (int): Maximum time to wait in seconds.
Returns:
bool: True if the file is created, False if timeout occurs.
"""
start_time = time.time()
while not os.path.exists(file_path):
if time.time() - start_time > timeout:
return False
time.sleep(0.5) # Check every 0.5 seconds
return True
def generate_spirit_animal_video(driving_video_path):
os.chdir(".")
try:
# Step 1: Extract the first frame
cap = cv2.VideoCapture(driving_video_path)
if not cap.isOpened():
print("Error: Unable to open video.")
return None
ret, frame = cap.read()
cap.release()
if not ret:
print("Error: Unable to read the first frame.")
return None
# Save the first frame
first_frame_path = "./first_frame.jpg"
cv2.imwrite(first_frame_path, frame)
print(f"First frame saved to: {first_frame_path}")
# Generate spirit animal image
_, input_image = generate_multiple_animals(first_frame_path, True, 1)
if input_image is None or not input_image:
print("Error: Spirit animal generation failed.")
return None
spirit_animal_path = "./animal.jpeg"
cv2.imwrite(spirit_animal_path, cv2.cvtColor(np.array(input_image[0]), cv2.COLOR_RGB2BGR))
print(f"Spirit animal image saved to: {spirit_animal_path}")
# Step 3: Run inference
output_path = "./animations/animal--uploaded_video_compressed.mp4"
script_path = os.path.abspath("./LivePortrait/inference_animals.py")
if not os.path.exists(script_path):
print(f"Error: Inference script not found at {script_path}.")
return None
command = f"python {script_path} -s {spirit_animal_path} -d {driving_video_path} --driving_multiplier 1.75 --no_flag_stitching"
print(f"Running command: {command}")
result = os.system(command)
if result != 0:
print(f"Error: Command failed with exit code {result}.")
return None
# Verify output file exists
if not os.path.exists(output_path):
print(f"Error: Expected output video not found at {output_path}.")
return None
print(f"Output video generated at: {output_path}")
return output_path
except Exception as e:
print(f"Error occurred: {e}")
return None
def generate_spirit_animal(image, animal_type, background):
if animal_type == "Single Animal":
if background == "Preserve Background":
prompt, generated_images = spirit_animal_with_background(image)
else:
prompt, generated_images = spirit_animal_baseline(image)
elif animal_type == "Multiple Animals":
if background == "Preserve Background":
prompt, generated_images = generate_multiple_animals(image, keep_background=True)
else:
prompt, generated_images = generate_multiple_animals(image, keep_background=False)
return prompt, generated_images
def compress_video(input_path, output_path, target_size_mb):
target_size_bytes = target_size_mb * 1024 * 1024
temp_output = "./temp_compressed.mp4"
cap = cv2.VideoCapture(input_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用 mp4 编码
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
writer = cv2.VideoWriter(temp_output, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
writer.write(frame)
cap.release()
writer.release()
current_size = os.path.getsize(temp_output)
if current_size > target_size_bytes:
bitrate = int(target_size_bytes * 8 / (current_size / target_size_bytes)) # 按比例缩减比特率
os.system(f"ffmpeg -i {temp_output} -b:v {bitrate} -y {output_path}")
os.remove(temp_output)
else:
shutil.move(temp_output, output_path)
def process_video(video_file):
# # 初始化 LivePortrait
# try:
# download_liveportrait()
# except Exception as e:
# print("Failed to initialize LivePortrait:", e)
# return gr.update(value=None, visible=False)
# # 下载 Hugging Face 资源
# try:
# download_huggingface_resources()
# except Exception as e:
# print("Failed to download Hugging Face resources:", e)
# return gr.update(value=None, visible=False)
compressed_path = "./uploaded_video_compressed.mp4"
compress_video(video_file, compressed_path, target_size_mb=1)
print(f"Compressed and moved video to: {compressed_path}")
output_video_path = "./animations/animal--uploaded_video_compressed.mp4"
generate_spirit_animal_video(compressed_path)
# Wait until the output video is generated
timeout = 1000 # Timeout in seconds
if not wait_for_file(output_video_path, timeout=timeout):
print("Timeout occurred while waiting for video generation.")
return gr.update(value=None, visible=False) # Hide output if failed
# Return the generated video path
print(f"Output video is ready: {output_video_path}")
return gr.update(value=output_video_path, visible=True) # Show video
# Custom CSS styling for the interface
css = """
#title-container {
font-family: 'Arial', sans-serif;
color: #4a4a4a;
text-align: center;
margin-bottom: 20px;
}
#title-container h1 {
font-size: 2.5em;
font-weight: bold;
color: #ff9900;
}
#title-container h2 {
font-size: 1.2em;
color: #6c757d;
}
#intro-text {
font-size: 1em;
color: #6c757d;
margin: 50px;
text-align: center;
font-style: italic;
}
#prompt-output {
font-family: 'Courier New', monospace;
color: #5a5a5a;
font-size: 1.1em;
padding: 10px;
background-color: #f9f9f9;
border: 1px solid #ddd;
border-radius: 5px;
margin-top: 10px;
}
"""
# Title and description
title_html = """
<div id="title-container">
<h1>Spirit Animal Generator</h1>
<h2>Create your unique spirit animal with AI-assisted image generation.</h2>
</div>
"""
description_text = """
### Project Overview
Welcome to the Spirit Animal Generator! This tool leverages advanced AI technologies to create unique visualizations of spirit animals from both videos and images.
#### Key Features:
1. **Video Transformation**: Upload a driving video to generate a creative spirit animal animation.
2. **Image Creation**: Upload an image and customize the spirit animal type and background options.
3. **AI-Powered Prompting**: OpenAI's GPT generates descriptive prompts for each input.
4. **High-Quality Outputs**: Generated using Stable Diffusion and ControlNet for stunning visuals.
---
### How It Works:
1. **Upload Your Media**:
- Videos: Ensure the file is in MP4 format.
- Images: Use clear, high-resolution photos for better results.
2. **Customize Options**:
- For images, select the type of animal and background settings.
3. **View Your Results**:
- Videos will be transformed into animations.
- Images will produce customized visual art along with a generated prompt.
Discover your spirit animal and let your imagination run wild!
---
"""
with gr.Blocks() as demo:
gr.HTML(title_html)
gr.Markdown(description_text)
with gr.Tabs():
with gr.Tab("Generate Spirit Animal Image"):
gr.Markdown("Upload an image to generate a spirit animal.")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload an image")
animal_type = gr.Radio(choices=["Single Animal", "Multiple Animals"], label="Animal Type", value="Single Animal")
background_option = gr.Radio(choices=["Preserve Background", "Don't Preserve Background"], label="Background Option", value="Preserve Background")
generate_image_button = gr.Button("Generate Image")
gr.Examples(
examples=["example1.jpg", "example2.jpg", "example3.jpg"],
inputs=image_input,
label="Example Images"
)
with gr.Column(scale=1):
generated_prompt = gr.Textbox(label="Generated Prompt")
generated_gallery = gr.Gallery(label="Generated Images")
generate_image_button.click(
fn=generate_spirit_animal,
inputs=[image_input, animal_type, background_option],
outputs=[generated_prompt, generated_gallery],
)
with gr.Tab("Generate Spirit Animal Video"):
gr.Markdown("Upload a driving video to generate a spirit animal video.")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Upload a driving video (MP4 format)")
generate_video_button = gr.Button("Generate Video")
with gr.Column(scale=1):
video_output = gr.Video(label="Generated Spirit Animal Video")
generate_video_button.click(
fn=process_video,
inputs=video_input,
outputs=video_output,
)
demo.launch() |