File size: 1,544 Bytes
0193ac9
275b6e6
 
0193ac9
 
 
70e7f3f
 
 
 
 
 
0193ac9
 
a255b0d
0193ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31744e
0193ac9
4e02d85
0193ac9
a31744e
0193ac9
33bf668
0193ac9
 
 
 
70e7f3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from huggingface_hub import InferenceClient
import gradio as gr

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


mychatbot = gr.Chatbot(
    avatar_images=["./user.png", "./Ember Logo.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)

demo = gr.ChatInterface(fn=generate,
                        chatbot=mychatbot,
                        title="Ember_Chat_25",
                        retry_btn=None,
                        undo_btn=None
                       )

demo.queue().launch(show_api=False)