File size: 4,677 Bytes
8b4c6c7 c475f49 8b4c6c7 60f9cc3 01cce23 8b4c6c7 b35d1f7 8b4c6c7 c475f49 8b4c6c7 c475f49 8b4c6c7 b35d1f7 8b4c6c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import gradio as gr
from gradio_image_prompter import ImagePrompter
from detectron2.config import LazyConfig, instantiate
from detectron2.checkpoint import DetectionCheckpointer
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download
import spaces
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Is CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
model_choice = {
'SAM': None,
'HQ-SAM': None,
'SAM2': None
}
for model_type in model_choice.keys():
model_choice[model_type] = hf_hub_download(repo_id="XiaRho/SEMat", filename=f"SEMat_{model_type}.pth", repo_type="model")
def load_model(model_type='HQ-SAM'):
assert model_type in model_choice.keys()
config_path = './configs/SEMat_{}.py'.format(model_type)
cfg = LazyConfig.load(config_path)
if hasattr(cfg.model.sam_model, 'ckpt_path'):
cfg.model.sam_model.ckpt_path = None
else:
cfg.model.sam_model.checkpoint = None
model = instantiate(cfg.model)
if model.lora_rank is not None:
model.init_lora()
model.to(DEVICE)
DetectionCheckpointer(model).load(model_choice[model_type])
model.eval()
return model, model_type
def transform_image_bbox(prompts):
if len(prompts["points"]) != 1:
raise gr.Error("Please input only one BBox.", duration=5)
[[x1, y1, idx_3, x2, y2, idx_6]] = prompts["points"]
if idx_3 != 2 or idx_6 != 3:
raise gr.Error("Please input BBox instead of point.", duration=5)
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
img = prompts["image"]
ori_H, ori_W, _ = img.shape
scale = 1024 * 1.0 / max(ori_H, ori_W)
new_H, new_W = ori_H * scale, ori_W * scale
new_W = int(new_W + 0.5)
new_H = int(new_H + 0.5)
img = cv2.resize(img, (new_W, new_H), interpolation=cv2.INTER_LINEAR)
padding = np.zeros([1024, 1024, 3], dtype=img.dtype)
padding[: new_H, : new_W, :] = img
img = padding
# img = img[:, :, ::-1].transpose((2, 0, 1)).astype(np.float32) / 255.0
img = img.transpose((2, 0, 1)).astype(np.float32) / 255.0
[[x1, y1, _, x2, y2, _]] = prompts["points"]
x1, y1, x2, y2 = int(x1 * scale + 0.5), int(y1 * scale + 0.5), int(x2 * scale + 0.5), int(y2 * scale + 0.5)
bbox = np.clip(np.array([[x1, y1, x2, y2]]) * 1.0, 0, 1023.0)
return img, bbox, (ori_H, ori_W), (new_H, new_W)
if __name__ == '__main__':
model, model_type = load_model()
@spaces.GPU
def inference_image(prompts, input_model_type):
global model_type
global model
if input_model_type != model_type:
gr.Info('Loading SEMat of {} version.'.format(input_model_type), duration=5)
_model, _ = load_model(input_model_type)
model_type = input_model_type
model = _model
image, bbox, ori_H_W, pad_H_W = transform_image_bbox(prompts)
input_data = {
'image': torch.from_numpy(image)[None].to(model.device),
'bbox': torch.from_numpy(bbox)[None].to(model.device),
}
with torch.no_grad():
inputs = model.preprocess_inputs(input_data)
images, bbox, gt_alpha, trimap, condition = inputs['images'], inputs['bbox'], inputs['alpha'], inputs['trimap'], inputs['condition']
if model.backbone_condition:
condition_proj = model.condition_embedding(condition)
elif model.backbone_bbox_prompt is not None or model.bbox_prompt_all_block is not None:
condition_proj = bbox
else:
condition_proj = None
low_res_masks, pred_alphas, pred_trimap, sam_hq_matting_token = model.forward_samhq_and_matting_decoder(images, bbox, condition_proj)
output_alpha = np.uint8(pred_alphas[0, 0][:pad_H_W[0], :pad_H_W[1], None].repeat(1, 1, 3).cpu().numpy() * 255)
return output_alpha
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=45):
img_in = ImagePrompter(type='numpy', show_label=False, label="query image")
with gr.Column(scale=45):
img_out = gr.Image(type='pil', label="output")
with gr.Row():
with gr.Column(scale=45):
input_model_type = gr.Dropdown(list(model_choice.keys()), value='HQ-SAM', label="Trained SEMat Version")
with gr.Column(scale=45):
bt = gr.Button()
bt.click(inference_image, inputs=[img_in, input_model_type], outputs=[img_out])
demo.launch()
|