File size: 59,406 Bytes
8b4c6c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 |
'''
Dataloader to process Adobe Image Matting Dataset.
From GCA_Matting(https://github.com/Yaoyi-Li/GCA-Matting/tree/master/dataloader)
'''
import os
import glob
import logging
import os.path as osp
import functools
import numpy as np
import torch
import cv2
import math
import numbers
import random
import pickle
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F
from torchvision import transforms
from easydict import EasyDict
from detectron2.utils.logger import setup_logger
from detectron2.utils import comm
from detectron2.data import build_detection_test_loader
import torchvision.transforms.functional
import json
from PIL import Image
from detectron2.evaluation.evaluator import DatasetEvaluator
from collections import defaultdict
from data.evaluate import compute_sad_loss, compute_mse_loss, compute_mad_loss, compute_gradient_loss, compute_connectivity_error
# Base default config
CONFIG = EasyDict({})
# Model config
CONFIG.model = EasyDict({})
# one-hot or class, choice: [3, 1]
CONFIG.model.trimap_channel = 1
# Dataloader config
CONFIG.data = EasyDict({})
# feed forward image size (untested)
CONFIG.data.crop_size = 512
# composition of two foregrounds, affine transform, crop and HSV jitter
CONFIG.data.cutmask_prob = 0.25
CONFIG.data.augmentation = True
CONFIG.data.random_interp = True
class Prefetcher():
"""
Modified from the data_prefetcher in https://github.com/NVIDIA/apex/blob/master/examples/imagenet/main_amp.py
"""
def __init__(self, loader):
self.orig_loader = loader
self.stream = torch.cuda.Stream()
self.next_sample = None
def preload(self):
try:
self.next_sample = next(self.loader)
except StopIteration:
self.next_sample = None
return
with torch.cuda.stream(self.stream):
for key, value in self.next_sample.items():
if isinstance(value, torch.Tensor):
self.next_sample[key] = value.cuda(non_blocking=True)
def __next__(self):
torch.cuda.current_stream().wait_stream(self.stream)
sample = self.next_sample
if sample is not None:
for key, value in sample.items():
if isinstance(value, torch.Tensor):
sample[key].record_stream(torch.cuda.current_stream())
self.preload()
else:
# throw stop exception if there is no more data to perform as a default dataloader
raise StopIteration("No samples in loader. example: `iterator = iter(Prefetcher(loader)); "
"data = next(iterator)`")
return sample
def __iter__(self):
self.loader = iter(self.orig_loader)
self.preload()
return self
class ImageFile(object):
def __init__(self, phase='train'):
self.phase = phase
self.rng = np.random.RandomState(0)
def _get_valid_names(self, *dirs, shuffle=True):
name_sets = [self._get_name_set(d) for d in dirs]
def _join_and(a, b):
return a & b
valid_names = list(functools.reduce(_join_and, name_sets))
if shuffle:
self.rng.shuffle(valid_names)
return valid_names
@staticmethod
def _get_name_set(dir_name):
path_list = glob.glob(os.path.join(dir_name, '*'))
name_set = set()
for path in path_list:
name = os.path.basename(path)
name = os.path.splitext(name)[0]
name_set.add(name)
return name_set
@staticmethod
def _list_abspath(data_dir, ext, data_list):
return [os.path.join(data_dir, name + ext)
for name in data_list]
class ImageFileTrain(ImageFile):
def __init__(
self,
alpha_dir="train_alpha",
fg_dir="train_fg",
bg_dir="train_bg",
alpha_ext=".jpg",
fg_ext=".jpg",
bg_ext=".jpg",
fg_have_bg_num=None,
alpha_ratio_json = None,
alpha_min_ratio = None,
key_sample_ratio = None,
):
super(ImageFileTrain, self).__init__(phase="train")
self.alpha_dir = alpha_dir
self.fg_dir = fg_dir
self.bg_dir = bg_dir
self.alpha_ext = alpha_ext
self.fg_ext = fg_ext
self.bg_ext = bg_ext
logger = setup_logger(name=__name__)
if not isinstance(self.alpha_dir, str):
assert len(self.alpha_dir) == len(self.fg_dir) == len(alpha_ext) == len(fg_ext)
self.valid_fg_list = []
self.alpha = []
self.fg = []
self.key_alpha = []
self.key_fg = []
for i in range(len(self.alpha_dir)):
valid_fg_list = self._get_valid_names(self.fg_dir[i], self.alpha_dir[i])
valid_fg_list.sort()
alpha = self._list_abspath(self.alpha_dir[i], self.alpha_ext[i], valid_fg_list)
fg = self._list_abspath(self.fg_dir[i], self.fg_ext[i], valid_fg_list)
self.valid_fg_list += valid_fg_list
self.alpha += alpha * fg_have_bg_num[i]
self.fg += fg * fg_have_bg_num[i]
if alpha_ratio_json[i] is not None:
tmp_key_alpha = []
tmp_key_fg = []
name_to_alpha_path = dict()
for name in alpha:
name_to_alpha_path[name.split('/')[-1].split('.')[0]] = name
name_to_fg_path = dict()
for name in fg:
name_to_fg_path[name.split('/')[-1].split('.')[0]] = name
with open(alpha_ratio_json[i], 'r') as file:
alpha_ratio_list = json.load(file)
for ratio, name in alpha_ratio_list:
if ratio < alpha_min_ratio[i]:
break
tmp_key_alpha.append(name_to_alpha_path[name.split('.')[0]])
tmp_key_fg.append(name_to_fg_path[name.split('.')[0]])
self.key_alpha.extend(tmp_key_alpha * fg_have_bg_num[i])
self.key_fg.extend(tmp_key_fg * fg_have_bg_num[i])
if len(self.key_alpha) != 0 and key_sample_ratio > 0:
repeat_num = key_sample_ratio * (len(self.alpha) - len(self.key_alpha)) / len(self.key_alpha) / (1 - key_sample_ratio) - 1
print('key sample num:', len(self.key_alpha), ', repeat num: ', repeat_num)
for i in range(math.ceil(repeat_num)):
self.alpha += self.key_alpha
self.fg += self.key_fg
else:
self.valid_fg_list = self._get_valid_names(self.fg_dir, self.alpha_dir)
self.valid_fg_list.sort()
self.alpha = self._list_abspath(self.alpha_dir, self.alpha_ext, self.valid_fg_list)
self.fg = self._list_abspath(self.fg_dir, self.fg_ext, self.valid_fg_list)
self.valid_bg_list = [os.path.splitext(name)[0] for name in os.listdir(self.bg_dir)]
self.valid_bg_list.sort()
if fg_have_bg_num is not None:
# assert fg_have_bg_num * len(self.valid_fg_list) <= len(self.valid_bg_list)
# self.valid_bg_list = self.valid_bg_list[: fg_have_bg_num * len(self.valid_fg_list)]
assert len(self.alpha) <= len(self.valid_bg_list)
self.valid_bg_list = self.valid_bg_list[: len(self.alpha)]
self.bg = self._list_abspath(self.bg_dir, self.bg_ext, self.valid_bg_list)
def __len__(self):
return len(self.alpha)
class ImageFileTest(ImageFile):
def __init__(self,
alpha_dir="test_alpha",
merged_dir="test_merged",
trimap_dir="test_trimap",
alpha_ext=".png",
merged_ext=".png",
trimap_ext=".png"):
super(ImageFileTest, self).__init__(phase="test")
self.alpha_dir = alpha_dir
self.merged_dir = merged_dir
self.trimap_dir = trimap_dir
self.alpha_ext = alpha_ext
self.merged_ext = merged_ext
self.trimap_ext = trimap_ext
self.valid_image_list = self._get_valid_names(self.alpha_dir, self.merged_dir, self.trimap_dir, shuffle=False)
self.alpha = self._list_abspath(self.alpha_dir, self.alpha_ext, self.valid_image_list)
self.merged = self._list_abspath(self.merged_dir, self.merged_ext, self.valid_image_list)
self.trimap = self._list_abspath(self.trimap_dir, self.trimap_ext, self.valid_image_list)
def __len__(self):
return len(self.alpha)
interp_list = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]
def maybe_random_interp(cv2_interp):
if CONFIG.data.random_interp:
return np.random.choice(interp_list)
else:
return cv2_interp
class ToTensor(object):
"""
Convert ndarrays in sample to Tensors with normalization.
"""
def __init__(self, phase="test"):
self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
self.std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
self.phase = phase
def __call__(self, sample):
image, alpha, trimap, mask = sample['image'][:,:,::-1], sample['alpha'], sample['trimap'], sample['mask']
alpha[alpha < 0 ] = 0
alpha[alpha > 1] = 1
image = image.transpose((2, 0, 1)).astype(np.float32)
alpha = np.expand_dims(alpha.astype(np.float32), axis=0)
mask = np.expand_dims(mask.astype(np.float32), axis=0)
image /= 255.
if self.phase == "train":
fg = sample['fg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
sample['fg'] = torch.from_numpy(fg)
bg = sample['bg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
sample['bg'] = torch.from_numpy(bg)
sample['image'], sample['alpha'], sample['trimap'] = \
torch.from_numpy(image), torch.from_numpy(alpha), torch.from_numpy(trimap).to(torch.long)
sample['image'] = sample['image']
if CONFIG.model.trimap_channel == 3:
sample['trimap'] = F.one_hot(sample['trimap'], num_classes=3).permute(2,0,1).float()
elif CONFIG.model.trimap_channel == 1:
sample['trimap'] = sample['trimap'][None,...].float()
else:
raise NotImplementedError("CONFIG.model.trimap_channel can only be 3 or 1")
sample['trimap'][sample['trimap'] < 85] = 0
sample['trimap'][sample['trimap'] >= 170] = 1
sample['trimap'][sample['trimap'] >= 85] = 0.5
sample['mask'] = torch.from_numpy(mask).float()
return sample
class RandomAffine(object):
"""
Random affine translation
"""
def __init__(self, degrees, translate=None, scale=None, shear=None, flip=None, resample=False, fillcolor=0):
if isinstance(degrees, numbers.Number):
if degrees < 0:
raise ValueError("If degrees is a single number, it must be positive.")
self.degrees = (-degrees, degrees)
else:
assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
"degrees should be a list or tuple and it must be of length 2."
self.degrees = degrees
if translate is not None:
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"translate should be a list or tuple and it must be of length 2."
for t in translate:
if not (0.0 <= t <= 1.0):
raise ValueError("translation values should be between 0 and 1")
self.translate = translate
if scale is not None:
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
"scale should be a list or tuple and it must be of length 2."
for s in scale:
if s <= 0:
raise ValueError("scale values should be positive")
self.scale = scale
if shear is not None:
if isinstance(shear, numbers.Number):
if shear < 0:
raise ValueError("If shear is a single number, it must be positive.")
self.shear = (-shear, shear)
else:
assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
"shear should be a list or tuple and it must be of length 2."
self.shear = shear
else:
self.shear = shear
self.resample = resample
self.fillcolor = fillcolor
self.flip = flip
@staticmethod
def get_params(degrees, translate, scale_ranges, shears, flip, img_size):
"""Get parameters for affine transformation
Returns:
sequence: params to be passed to the affine transformation
"""
angle = random.uniform(degrees[0], degrees[1])
if translate is not None:
max_dx = translate[0] * img_size[0]
max_dy = translate[1] * img_size[1]
translations = (np.round(random.uniform(-max_dx, max_dx)),
np.round(random.uniform(-max_dy, max_dy)))
else:
translations = (0, 0)
if scale_ranges is not None:
scale = (random.uniform(scale_ranges[0], scale_ranges[1]),
random.uniform(scale_ranges[0], scale_ranges[1]))
else:
scale = (1.0, 1.0)
if shears is not None:
shear = random.uniform(shears[0], shears[1])
else:
shear = 0.0
if flip is not None:
flip = (np.random.rand(2) < flip).astype(np.int32) * 2 - 1
return angle, translations, scale, shear, flip
def __call__(self, sample):
fg, alpha = sample['fg'], sample['alpha']
rows, cols, ch = fg.shape
if np.maximum(rows, cols) < 1024:
params = self.get_params((0, 0), self.translate, self.scale, self.shear, self.flip, fg.size)
else:
params = self.get_params(self.degrees, self.translate, self.scale, self.shear, self.flip, fg.size)
center = (cols * 0.5 + 0.5, rows * 0.5 + 0.5)
M = self._get_inverse_affine_matrix(center, *params)
M = np.array(M).reshape((2, 3))
fg = cv2.warpAffine(fg, M, (cols, rows),
flags=maybe_random_interp(cv2.INTER_NEAREST) + cv2.WARP_INVERSE_MAP)
alpha = cv2.warpAffine(alpha, M, (cols, rows),
flags=maybe_random_interp(cv2.INTER_NEAREST) + cv2.WARP_INVERSE_MAP)
sample['fg'], sample['alpha'] = fg, alpha
return sample
@ staticmethod
def _get_inverse_affine_matrix(center, angle, translate, scale, shear, flip):
angle = math.radians(angle)
shear = math.radians(shear)
scale_x = 1.0 / scale[0] * flip[0]
scale_y = 1.0 / scale[1] * flip[1]
# Inverted rotation matrix with scale and shear
d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
matrix = [
math.cos(angle) * scale_x, math.sin(angle + shear) * scale_x, 0,
-math.sin(angle) * scale_y, math.cos(angle + shear) * scale_y, 0
]
matrix = [m / d for m in matrix]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += center[0]
matrix[5] += center[1]
return matrix
class RandomJitter(object):
"""
Random change the hue of the image
"""
def __call__(self, sample):
sample_ori = sample.copy()
fg, alpha = sample['fg'], sample['alpha']
# if alpha is all 0 skip
if np.all(alpha==0):
return sample_ori
# convert to HSV space, convert to float32 image to keep precision during space conversion.
fg = cv2.cvtColor(fg.astype(np.float32)/255.0, cv2.COLOR_BGR2HSV)
# Hue noise
hue_jitter = np.random.randint(-40, 40)
fg[:, :, 0] = np.remainder(fg[:, :, 0].astype(np.float32) + hue_jitter, 360)
# Saturation noise
sat_bar = fg[:, :, 1][alpha > 0].mean()
if np.isnan(sat_bar):
return sample_ori
sat_jitter = np.random.rand()*(1.1 - sat_bar)/5 - (1.1 - sat_bar) / 10
sat = fg[:, :, 1]
sat = np.abs(sat + sat_jitter)
sat[sat>1] = 2 - sat[sat>1]
fg[:, :, 1] = sat
# Value noise
val_bar = fg[:, :, 2][alpha > 0].mean()
if np.isnan(val_bar):
return sample_ori
val_jitter = np.random.rand()*(1.1 - val_bar)/5-(1.1 - val_bar) / 10
val = fg[:, :, 2]
val = np.abs(val + val_jitter)
val[val>1] = 2 - val[val>1]
fg[:, :, 2] = val
# convert back to BGR space
fg = cv2.cvtColor(fg, cv2.COLOR_HSV2BGR)
sample['fg'] = fg*255
return sample
class RandomHorizontalFlip(object):
"""
Random flip image and label horizontally
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, sample):
fg, alpha = sample['fg'], sample['alpha']
if np.random.uniform(0, 1) < self.prob:
fg = cv2.flip(fg, 1)
alpha = cv2.flip(alpha, 1)
sample['fg'], sample['alpha'] = fg, alpha
return sample
class RandomCrop(object):
"""
Crop randomly the image in a sample, retain the center 1/4 images, and resize to 'output_size'
:param output_size (tuple or int): Desired output size. If int, square crop
is made.
"""
def __init__(self, output_size=( CONFIG.data.crop_size, CONFIG.data.crop_size)):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
self.margin = output_size[0] // 2
self.logger = logging.getLogger("Logger")
def __call__(self, sample):
fg, alpha, trimap, mask, name = sample['fg'], sample['alpha'], sample['trimap'], sample['mask'], sample['image_name']
bg = sample['bg']
h, w = trimap.shape
bg = cv2.resize(bg, (w, h), interpolation=maybe_random_interp(cv2.INTER_CUBIC))
if w < self.output_size[0]+1 or h < self.output_size[1]+1:
ratio = 1.1*self.output_size[0]/h if h < w else 1.1*self.output_size[1]/w
# self.logger.warning("Size of {} is {}.".format(name, (h, w)))
while h < self.output_size[0]+1 or w < self.output_size[1]+1:
fg = cv2.resize(fg, (int(w*ratio), int(h*ratio)), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
alpha = cv2.resize(alpha, (int(w*ratio), int(h*ratio)),
interpolation=maybe_random_interp(cv2.INTER_NEAREST))
trimap = cv2.resize(trimap, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
bg = cv2.resize(bg, (int(w*ratio), int(h*ratio)), interpolation=maybe_random_interp(cv2.INTER_CUBIC))
mask = cv2.resize(mask, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
h, w = trimap.shape
small_trimap = cv2.resize(trimap, (w//4, h//4), interpolation=cv2.INTER_NEAREST)
unknown_list = list(zip(*np.where(small_trimap[self.margin//4:(h-self.margin)//4,
self.margin//4:(w-self.margin)//4] == 128)))
unknown_num = len(unknown_list)
if len(unknown_list) < 10:
left_top = (np.random.randint(0, h-self.output_size[0]+1), np.random.randint(0, w-self.output_size[1]+1))
else:
idx = np.random.randint(unknown_num)
left_top = (unknown_list[idx][0]*4, unknown_list[idx][1]*4)
fg_crop = fg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
alpha_crop = alpha[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
bg_crop = bg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
trimap_crop = trimap[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
mask_crop = mask[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
if len(np.where(trimap==128)[0]) == 0:
self.logger.error("{} does not have enough unknown area for crop. Resized to target size."
"left_top: {}".format(name, left_top))
fg_crop = cv2.resize(fg, self.output_size[::-1], interpolation=maybe_random_interp(cv2.INTER_NEAREST))
alpha_crop = cv2.resize(alpha, self.output_size[::-1], interpolation=maybe_random_interp(cv2.INTER_NEAREST))
trimap_crop = cv2.resize(trimap, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
bg_crop = cv2.resize(bg, self.output_size[::-1], interpolation=maybe_random_interp(cv2.INTER_CUBIC))
mask_crop = cv2.resize(mask, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
sample.update({'fg': fg_crop, 'alpha': alpha_crop, 'trimap': trimap_crop, 'mask': mask_crop, 'bg': bg_crop})
return sample
class OriginScale(object):
def __call__(self, sample):
h, w = sample["alpha_shape"]
if h % 32 == 0 and w % 32 == 0:
return sample
target_h = 32 * ((h - 1) // 32 + 1)
target_w = 32 * ((w - 1) // 32 + 1)
pad_h = target_h - h
pad_w = target_w - w
padded_image = np.pad(sample['image'], ((0,pad_h), (0, pad_w), (0,0)), mode="reflect")
padded_trimap = np.pad(sample['trimap'], ((0,pad_h), (0, pad_w)), mode="reflect")
padded_mask = np.pad(sample['mask'], ((0,pad_h), (0, pad_w)), mode="reflect")
sample['image'] = padded_image
sample['trimap'] = padded_trimap
sample['mask'] = padded_mask
return sample
class GenMask(object):
def __init__(self):
self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,30)]
def __call__(self, sample):
alpha_ori = sample['alpha']
h, w = alpha_ori.shape
max_kernel_size = 30
alpha = cv2.resize(alpha_ori, (640,640), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
### generate trimap
fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
fg_width = np.random.randint(1, 30)
bg_width = np.random.randint(1, 30)
fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
fg_mask = cv2.erode(fg_mask, self.erosion_kernels[fg_width])
bg_mask = cv2.erode(bg_mask, self.erosion_kernels[bg_width])
trimap = np.ones_like(alpha) * 128
trimap[fg_mask == 1] = 255
trimap[bg_mask == 1] = 0
trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
sample['trimap'] = trimap
### generate mask
low = 0.01
high = 1.0
thres = random.random() * (high - low) + low
seg_mask = (alpha >= thres).astype(np.int32).astype(np.uint8)
random_num = random.randint(0,3)
if random_num == 0:
seg_mask = cv2.erode(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
elif random_num == 1:
seg_mask = cv2.dilate(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
elif random_num == 2:
seg_mask = cv2.erode(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
seg_mask = cv2.dilate(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
elif random_num == 3:
seg_mask = cv2.dilate(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
seg_mask = cv2.erode(seg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
seg_mask = cv2.resize(seg_mask, (w,h), interpolation=cv2.INTER_NEAREST)
sample['mask'] = seg_mask
return sample
class Composite(object):
def __call__(self, sample):
fg, bg, alpha = sample['fg'], sample['bg'], sample['alpha']
alpha[alpha < 0 ] = 0
alpha[alpha > 1] = 1
fg[fg < 0 ] = 0
fg[fg > 255] = 255
bg[bg < 0 ] = 0
bg[bg > 255] = 255
image = fg * alpha[:, :, None] + bg * (1 - alpha[:, :, None])
sample['image'] = image
return sample
class CutMask(object):
def __init__(self, perturb_prob = 0):
self.perturb_prob = perturb_prob
def __call__(self, sample):
if np.random.rand() < self.perturb_prob:
return sample
mask = sample['mask'] # H x W, trimap 0--255, segmask 0--1, alpha 0--1
h, w = mask.shape
perturb_size_h, perturb_size_w = random.randint(h // 4, h // 2), random.randint(w // 4, w // 2)
x = random.randint(0, h - perturb_size_h)
y = random.randint(0, w - perturb_size_w)
x1 = random.randint(0, h - perturb_size_h)
y1 = random.randint(0, w - perturb_size_w)
mask[x:x+perturb_size_h, y:y+perturb_size_w] = mask[x1:x1+perturb_size_h, y1:y1+perturb_size_w].copy()
sample['mask'] = mask
return sample
class ScaleFg(object):
def __init__(self, min_scale_fg_scale=0.5, max_scale_fg_scale=1.0):
self.min_scale_fg_scale = min_scale_fg_scale
self.max_scale_fg_scale = max_scale_fg_scale
def __call__(self, sample):
scale_factor = np.random.uniform(low=self.min_scale_fg_scale, high=self.max_scale_fg_scale)
fg, alpha = sample['fg'], sample['alpha'] # np.array(): [H, W, 3] 0 ~ 255 , [H, W] 0.0 ~ 1.0
h, w = alpha.shape
scale_h, scale_w = int(h * scale_factor), int(w * scale_factor)
new_fg, new_alpha = np.zeros_like(fg), np.zeros_like(alpha)
fg = cv2.resize(fg, (scale_w, scale_h), interpolation=cv2.INTER_LINEAR)
alpha = cv2.resize(alpha, (scale_w, scale_h), interpolation=cv2.INTER_LINEAR)
if scale_factor <= 1:
offset_h, offset_w = np.random.randint(h - scale_h + 1), np.random.randint(w - scale_w + 1)
new_fg[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w, :] = fg
new_alpha[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w] = alpha
else:
offset_h, offset_w = np.random.randint(scale_h - h + 1), np.random.randint(scale_w - w + 1)
new_fg = fg[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w, :]
new_alpha = alpha[offset_h: offset_h + scale_h, offset_w: offset_w + scale_w]
sample['fg'], sample['alpha'] = new_fg, new_alpha
return sample
class GenBBox(object):
def __init__(self, bbox_offset_factor = 0.1, random_crop_bbox = None, train_or_test = 'train', dataset_type = None, random_auto_matting=None):
self.bbox_offset_factor = bbox_offset_factor
self.random_crop_bbox = random_crop_bbox
self.train_or_test = train_or_test
self.dataset_type = dataset_type
self.random_auto_matting = random_auto_matting
def __call__(self, sample):
alpha = sample['alpha'] # [1, H, W] 0.0 ~ 1.0
indices = torch.nonzero(alpha[0], as_tuple=True)
if len(indices[0]) > 0:
min_x, min_y = torch.min(indices[1]), torch.min(indices[0])
max_x, max_y = torch.max(indices[1]), torch.max(indices[0])
if self.random_crop_bbox is not None and np.random.uniform(0, 1) < self.random_crop_bbox:
ori_h_w = (sample['alpha'].shape[-2], sample['alpha'].shape[-1])
sample['alpha'] = F.interpolate(sample['alpha'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
sample['image'] = F.interpolate(sample['image'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='bilinear', align_corners=False)[0]
sample['trimap'] = F.interpolate(sample['trimap'][None, :, min_y: max_y + 1, min_x: max_x + 1], size=ori_h_w, mode='nearest')[0]
bbox = torch.tensor([[0, 0, ori_h_w[1] - 1, ori_h_w[0] - 1]])
elif self.bbox_offset_factor != 0:
bbox_w = max(1, max_x - min_x)
bbox_h = max(1, max_y - min_y)
offset_w = math.ceil(self.bbox_offset_factor * bbox_w)
offset_h = math.ceil(self.bbox_offset_factor * bbox_h)
min_x = max(0, min_x + np.random.randint(-offset_w, offset_w))
max_x = min(alpha.shape[2] - 1, max_x + np.random.randint(-offset_w, offset_w))
min_y = max(0, min_y + np.random.randint(-offset_h, offset_h))
max_y = min(alpha.shape[1] - 1, max_y + np.random.randint(-offset_h, offset_h))
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
else:
bbox = torch.tensor([[min_x, min_y, max_x, max_y]])
if self.random_auto_matting is not None and np.random.uniform(0, 1) < self.random_auto_matting:
bbox = torch.tensor([[0, 0, alpha.shape[2] - 1, alpha.shape[1] - 1]])
else:
bbox = torch.zeros(1, 4)
sample['bbox'] = bbox.float()
return sample
class DataGenerator(Dataset):
def __init__(
self,
data,
phase="train",
crop_size=512,
remove_multi_fg=False,
min_scale_fg_scale=None,
max_scale_fg_scale=None,
with_bbox = False,
bbox_offset_factor = None,
return_keys = None,
random_crop_bbox = None,
dataset_name = None,
random_auto_matting = None,
):
self.phase = phase
# self.crop_size = CONFIG.data.crop_size
self.crop_size = crop_size
self.remove_multi_fg = remove_multi_fg
self.with_bbox = with_bbox
self.bbox_offset_factor = bbox_offset_factor
self.alpha = data.alpha
self.return_keys = return_keys
self.random_crop_bbox = random_crop_bbox
self.dataset_name = dataset_name
self.random_auto_matting = random_auto_matting
if self.phase == "train":
self.fg = data.fg
self.bg = data.bg
self.merged = []
self.trimap = []
else:
self.fg = []
self.bg = []
self.merged = data.merged
self.trimap = data.trimap
train_trans = [
RandomAffine(degrees=30, scale=[0.8, 1.25], shear=10, flip=0.5),
GenMask(),
CutMask(perturb_prob=CONFIG.data.cutmask_prob),
RandomCrop((self.crop_size, self.crop_size)),
RandomJitter(),
Composite(),
ToTensor(phase="train")
]
if min_scale_fg_scale is not None:
train_trans.insert(0, ScaleFg(min_scale_fg_scale, max_scale_fg_scale))
if self.with_bbox:
train_trans.append(GenBBox(bbox_offset_factor=self.bbox_offset_factor, random_crop_bbox=self.random_crop_bbox, random_auto_matting=self.random_auto_matting))
test_trans = [ OriginScale(), ToTensor() ]
self.transform = {
'train':
transforms.Compose(train_trans),
'val':
transforms.Compose([
OriginScale(),
ToTensor()
]),
'test':
transforms.Compose(test_trans)
}[phase]
self.fg_num = len(self.fg)
def select_keys(self, sample):
new_sample = {}
for key, val in sample.items():
if key in self.return_keys:
new_sample[key] = val
return new_sample
def __getitem__(self, idx):
if self.phase == "train":
fg = cv2.imread(self.fg[idx % self.fg_num])
alpha = cv2.imread(self.alpha[idx % self.fg_num], 0).astype(np.float32)/255
bg = cv2.imread(self.bg[idx], 1)
if not self.remove_multi_fg:
fg, alpha, multi_fg = self._composite_fg(fg, alpha, idx)
else:
multi_fg = False
image_name = os.path.split(self.fg[idx % self.fg_num])[-1]
sample = {'fg': fg, 'alpha': alpha, 'bg': bg, 'image_name': image_name, 'multi_fg': multi_fg}
else:
image = cv2.imread(self.merged[idx])
alpha = cv2.imread(self.alpha[idx], 0)/255.
trimap = cv2.imread(self.trimap[idx], 0)
mask = (trimap >= 170).astype(np.float32)
image_name = os.path.split(self.merged[idx])[-1]
sample = {'image': image, 'alpha': alpha, 'trimap': trimap, 'mask': mask, 'image_name': image_name, 'alpha_shape': alpha.shape}
sample = self.transform(sample)
if self.return_keys is not None:
sample = self.select_keys(sample)
if self.dataset_name is not None:
sample['dataset_name'] = self.dataset_name
return sample
def _composite_fg(self, fg, alpha, idx):
multi_fg = False
if np.random.rand() < 0.5:
idx2 = np.random.randint(self.fg_num) + idx
fg2 = cv2.imread(self.fg[idx2 % self.fg_num])
alpha2 = cv2.imread(self.alpha[idx2 % self.fg_num], 0).astype(np.float32)/255.
h, w = alpha.shape
fg2 = cv2.resize(fg2, (w, h), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
alpha2 = cv2.resize(alpha2, (w, h), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
alpha_tmp = 1 - (1 - alpha) * (1 - alpha2)
if np.any(alpha_tmp < 1):
fg = fg.astype(np.float32) * alpha[:,:,None] + fg2.astype(np.float32) * (1 - alpha[:,:,None])
# The overlap of two 50% transparency should be 25%
alpha = alpha_tmp
fg = fg.astype(np.uint8)
multi_fg = True
if np.random.rand() < 0.25:
# fg = cv2.resize(fg, (640, 640), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
# alpha = cv2.resize(alpha, (640, 640), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
fg = cv2.resize(fg, (1280, 1280), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
alpha = cv2.resize(alpha, (1280, 1280), interpolation=maybe_random_interp(cv2.INTER_NEAREST))
return fg, alpha, multi_fg
def __len__(self):
if self.phase == "train":
return len(self.bg)
else:
return len(self.alpha)
class ResziePad(object):
def __init__(self, target_size=1024):
self.target_size = target_size
def __call__(self, sample):
_, H, W = sample['image'].shape
scale = self.target_size * 1.0 / max(H, W)
new_H, new_W = H * scale, W * scale
new_W = int(new_W + 0.5)
new_H = int(new_H + 0.5)
choice = {'image', 'trimap', 'alpha'} if 'trimap' in sample.keys() else {'image', 'alpha'}
for key in choice:
if key in {'image', 'trimap'}:
sample[key] = F.interpolate(sample[key][None], size=(new_H, new_W), mode='bilinear', align_corners=False)[0]
else:
# sample[key] = F.interpolate(sample[key][None], size=(new_H, new_W), mode='nearest')[0]
sample[key] = F.interpolate(sample[key][None], size=(new_H, new_W), mode='bilinear', align_corners=False)[0]
padding = torch.zeros([sample[key].shape[0], self.target_size, self.target_size], dtype=sample[key].dtype, device=sample[key].device)
padding[:, : new_H, : new_W] = sample[key]
sample[key] = padding
return sample
class Cv2ResziePad(object):
def __init__(self, target_size=1024):
self.target_size = target_size
def __call__(self, sample):
H, W, _ = sample['image'].shape
scale = self.target_size * 1.0 / max(H, W)
new_H, new_W = H * scale, W * scale
new_W = int(new_W + 0.5)
new_H = int(new_H + 0.5)
choice = {'image', 'trimap', 'alpha'} if 'trimap' in sample.keys() and sample['trimap'] is not None else {'image', 'alpha'}
for key in choice:
sample[key] = cv2.resize(sample[key], (new_W, new_H), interpolation=cv2.INTER_LINEAR) # cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC
if key == 'image':
padding = np.zeros([self.target_size, self.target_size, sample[key].shape[-1]], dtype=sample[key].dtype)
padding[: new_H, : new_W, :] = sample[key]
sample[key] = padding
sample[key] = sample[key][:, :, ::-1].transpose((2, 0, 1)).astype(np.float32) #/ 255.0
else:
padding = np.zeros([self.target_size, self.target_size], dtype=sample[key].dtype)
padding[: new_H, : new_W] = sample[key]
sample[key] = padding
sample[key] = sample[key][None].astype(np.float32)
sample[key] = torch.from_numpy(sample[key])
return sample
class AdobeCompositionTest(Dataset):
def __init__(self, data_dir, target_size=1024, multi_fg=None):
self.data_dir = data_dir
self.file_names = sorted(os.listdir(os.path.join(self.data_dir, 'merged')))
test_trans = [
ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0)
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.file_names)
def __getitem__(self, idx):
phas = Image.open(os.path.join(self.data_dir, 'alpha_copy', self.file_names[idx])).convert('L')
tris = Image.open(os.path.join(self.data_dir, 'trimaps', self.file_names[idx]))
imgs = Image.open(os.path.join(self.data_dir, 'merged', self.file_names[idx]))
sample = {
'ori_h_w': (imgs.size[1], imgs.size[0]),
'data_type': 'Adobe'
}
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
sample['image_name'] = 'Adobe_' + self.file_names[idx]
sample = self.transform(sample)
sample['trimap'][sample['trimap'] < 85] = 0
sample['trimap'][sample['trimap'] >= 170] = 1
sample['trimap'][sample['trimap'] >= 85] = 0.5
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
class SIMTest(Dataset):
def __init__(self, data_dir, target_size=1024, multi_fg=None):
self.data_dir = data_dir
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, '*', 'alpha', '*']))) # [: 10]
test_trans = [
ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0)
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.file_names)
def __getitem__(self, idx):
phas = Image.open(self.file_names[idx]).convert('L')
# tris = Image.open(self.file_names[idx].replace('alpha', 'trimap'))
imgs = Image.open(self.file_names[idx].replace('alpha', 'merged'))
sample = {
'ori_h_w': (imgs.size[1], imgs.size[0]),
'data_type': 'SIM'
}
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
sample['image_name'] = 'SIM_{}_{}'.format(self.file_names[idx].split('/')[-3], self.file_names[idx].split('/')[-1])
sample = self.transform(sample)
# sample['trimap'][sample['trimap'] < 85] = 0
# sample['trimap'][sample['trimap'] >= 170] = 1
# sample['trimap'][sample['trimap'] >= 85] = 0.5
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
class RW100Test(Dataset):
def __init__(self, data_dir, target_size=1024, multi_fg=None):
self.data_dir = data_dir
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'mask', '*'])))
self.name_to_idx = dict()
for idx, file_name in enumerate(self.file_names):
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
test_trans = [
ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0, train_or_test='test', dataset_type='RW100')
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.file_names)
def __getitem__(self, idx):
phas = Image.open(self.file_names[idx]).convert('L')
imgs = Image.open(self.file_names[idx].replace('mask', 'image')[:-6] + '.jpg')
sample = {
'ori_h_w': (imgs.size[1], imgs.size[0]),
'data_type': 'RW100'
}
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
sample['image_name'] = 'RW100_' + self.file_names[idx].split('/')[-1]
sample = self.transform(sample)
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
class AIM500Test(Dataset):
def __init__(self, data_dir, target_size=1024, multi_fg=None):
self.data_dir = data_dir
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'original', '*'])))
self.name_to_idx = dict()
for idx, file_name in enumerate(self.file_names):
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
test_trans = [
ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0)
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.file_names)
def __getitem__(self, idx):
phas = Image.open(self.file_names[idx].replace('original', 'mask').replace('jpg', 'png')).convert('L')
# tris = Image.open(self.file_names[idx].replace('original', 'trimap').replace('jpg', 'png')).convert('L')
imgs = Image.open(self.file_names[idx])
sample = {
'ori_h_w': (imgs.size[1], imgs.size[0]),
'data_type': 'AIM500'
}
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
sample['image_name'] = 'AIM500_' + self.file_names[idx].split('/')[-1]
sample = self.transform(sample)
# sample['trimap'][sample['trimap'] < 85] = 0
# sample['trimap'][sample['trimap'] >= 170] = 1
# sample['trimap'][sample['trimap'] >= 85] = 0.5
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
class RWP636Test(Dataset):
def __init__(self, data_dir, target_size=1024, multi_fg=None):
self.data_dir = data_dir
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'image', '*'])))
self.name_to_idx = dict()
for idx, file_name in enumerate(self.file_names):
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
test_trans = [
ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0)
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.file_names)
def __getitem__(self, idx):
phas = Image.open(self.file_names[idx].replace('image', 'alpha').replace('jpg', 'png')).convert('L')
imgs = Image.open(self.file_names[idx])
sample = {
'ori_h_w': (imgs.size[1], imgs.size[0]),
'data_type': 'RWP636'
}
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
sample['image_name'] = 'RWP636_' + self.file_names[idx].split('/')[-1]
sample = self.transform(sample)
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
class AM2KTest(Dataset):
def __init__(self, data_dir, target_size=1024, multi_fg=None):
self.data_dir = data_dir
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'validation/original', '*'])))
test_trans = [
ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0)
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.file_names)
def __getitem__(self, idx):
phas = Image.open(self.file_names[idx].replace('original', 'mask').replace('jpg', 'png')).convert('L')
# tris = Image.open(self.file_names[idx].replace('original', 'trimap').replace('jpg', 'png')).convert('L')
imgs = Image.open(self.file_names[idx])
sample = {
'ori_h_w': (imgs.size[1], imgs.size[0]),
'data_type': 'AM2K'
}
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
sample['image_name'] = 'AM2K_' + self.file_names[idx].split('/')[-1]
sample = self.transform(sample)
# sample['trimap'][sample['trimap'] < 85] = 0
# sample['trimap'][sample['trimap'] >= 170] = 1
# sample['trimap'][sample['trimap'] >= 85] = 0.5
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
class P3M500Test(Dataset):
def __init__(self, data_dir, target_size=1024, multi_fg=None):
self.data_dir = data_dir
self.file_names = sorted(glob.glob(os.path.join(*[data_dir, 'original_image', '*'])))
self.name_to_idx = dict()
for idx, file_name in enumerate(self.file_names):
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
test_trans = [
ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0)
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.file_names)
def __getitem__(self, idx):
phas = Image.open(self.file_names[idx].replace('original_image', 'mask').replace('jpg', 'png')).convert('L')
# tris = Image.open(self.file_names[idx].replace('original_image', 'trimap').replace('jpg', 'png')).convert('L')
imgs = Image.open(self.file_names[idx])
sample = {
'ori_h_w': (imgs.size[1], imgs.size[0]),
'data_type': 'P3M500'
}
sample['alpha'] = torchvision.transforms.functional.to_tensor(phas) # [1, H, W] 0.0 ~ 1.0
# sample['trimap'] = torchvision.transforms.functional.to_tensor(tris) * 255.0
sample['image'] = torchvision.transforms.functional.to_tensor(imgs)
sample['image_name'] = 'P3M500_' + self.file_names[idx].split('/')[-1]
sample = self.transform(sample)
# sample['trimap'][sample['trimap'] < 85] = 0
# sample['trimap'][sample['trimap'] >= 170] = 1
# sample['trimap'][sample['trimap'] >= 85] = 0.5
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
class MattingTest(Dataset):
def __init__(
self,
data_type,
data_dir,
image_sub_path,
alpha_sub_path,
trimpa_sub_path=None,
target_size=1024,
multi_fg=None,
):
self.data_type = data_type
self.data_dir = data_dir
self.image_paths = sorted(glob.glob(os.path.join(*[data_dir, image_sub_path])))
self.alpha_paths = sorted(glob.glob(os.path.join(*[data_dir, alpha_sub_path])))
self.trimpa_paths = sorted(glob.glob(os.path.join(*[data_dir, trimpa_sub_path]))) if trimpa_sub_path is not None else None
self.name_to_idx = dict()
for idx, file_name in enumerate(self.image_paths):
self.name_to_idx[file_name.split('/')[-1].split('.')[0]] = idx
test_trans = [
Cv2ResziePad(target_size=target_size),
GenBBox(bbox_offset_factor=0)
]
self.transform = transforms.Compose(test_trans)
self.multi_fg = multi_fg
def __len__(self): # 1000
return len(self.image_paths)
def __getitem__(self, idx):
img = cv2.imread(self.image_paths[idx])
sample = {
'image': img.astype(np.float32) / 255,
'alpha': cv2.imread(self.alpha_paths[idx], 0).astype(np.float32) / 255,
'trimap': cv2.imread(self.trimpa_paths[idx], 0) if self.trimpa_paths is not None else None,
'ori_h_w': (img.shape[0], img.shape[1]),
'data_type': self.data_type,
'image_name': self.data_type + '_' + self.image_paths[idx].split('/')[-1]
}
sample = self.transform(sample)
if self.trimpa_paths is not None:
sample['trimap'][sample['trimap'] < 85] = 0
sample['trimap'][sample['trimap'] >= 170] = 1
sample['trimap'][sample['trimap'] >= 85] = 0.5
else:
del sample['trimap']
if self.multi_fg is not None:
sample['multi_fg'] = torch.tensor(self.multi_fg)
return sample
def adobe_composition_collate_fn(batch):
new_batch = defaultdict(list)
for sub_batch in batch:
for key in sub_batch.keys():
new_batch[key].append(sub_batch[key])
for key in new_batch:
if isinstance(new_batch[key][0], torch.Tensor):
new_batch[key] = torch.stack(new_batch[key])
return dict(new_batch)
def build_d2_test_dataloader(
dataset,
mapper=None,
total_batch_size=None,
local_batch_size=None,
num_workers=0,
collate_fn=None
):
assert (total_batch_size is None) != (
local_batch_size is None
), "Either total_batch_size or local_batch_size must be specified"
world_size = comm.get_world_size()
if total_batch_size is not None:
assert (
total_batch_size > 0 and total_batch_size % world_size == 0
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
total_batch_size, world_size
)
batch_size = total_batch_size // world_size
if local_batch_size is not None:
batch_size = local_batch_size
logger = logging.getLogger(__name__)
if batch_size != 1:
logger.warning(
"When testing, batch size is set to 1. "
"This is the only mode that is supported for d2."
)
return build_detection_test_loader(
dataset=dataset,
mapper=mapper,
sampler=None,
num_workers=num_workers,
collate_fn=collate_fn,
)
class AdobeCompositionEvaluator(DatasetEvaluator):
def __init__(
self,
save_eval_results_step=-1,
output_dir=None,
eval_dataset_type=['Adobe'],
distributed=True,
eval_w_sam_hq_mask = False,
):
self.save_eval_results_step = save_eval_results_step
self.output_dir = output_dir
self.eval_index = 0
self.eval_dataset_type = eval_dataset_type
self.eval_w_sam_hq_mask = eval_w_sam_hq_mask
self._distributed = distributed
self._logger = logging.getLogger(__name__)
def reset(self):
self.eval_metric = dict()
for i in self.eval_dataset_type:
self.eval_metric[i + '_MSE'] = []
self.eval_metric[i + '_SAD'] = []
self.eval_metric[i + '_MAD'] = []
self.eval_metric[i + '_Grad'] = []
self.eval_metric[i + '_Conn'] = []
os.makedirs(self.output_dir, exist_ok=True) if self.output_dir is not None else None
def process(self, inputs, outputs):
"""
Args:
inputs: {'alpha', 'trimap', 'image', 'bbox', 'image_name'}
outputs: [1, 1, H, W] 0. ~ 1.
"""
# crop the black pad area
assert inputs['image'].shape[-1] == inputs['image'].shape[-2] == 1024 and len(inputs['ori_h_w']) == 1
inputs['ori_h_w'] = inputs['ori_h_w'][0]
before_pad_h, before_pad_w = int(1024 / max(inputs['ori_h_w']) * inputs['ori_h_w'][0] + 0.5), int(1024 / max(inputs['ori_h_w']) * inputs['ori_h_w'][1] + 0.5)
inputs['image'] = inputs['image'][:, :, :before_pad_h, :before_pad_w]
inputs['alpha'] = inputs['alpha'][:, :, :before_pad_h, :before_pad_w]
if self.eval_w_sam_hq_mask:
outputs, samhq_low_res_masks = outputs[0][:, :, :before_pad_h, :before_pad_w], outputs[1][:, :, :before_pad_h, :before_pad_w]
pred_alpha, label_alpha, samhq_low_res_masks = outputs.cpu().numpy(), inputs['alpha'].numpy(), (samhq_low_res_masks > 0).float().cpu()
else:
outputs = outputs[:, :, :before_pad_h, :before_pad_w]
pred_alpha, label_alpha = outputs.cpu().numpy(), inputs['alpha'].numpy()
# if 'trimap' in inputs.keys():
# inputs['trimap'] = inputs['trimap'][:, :, :before_pad_h, :before_pad_w]
# trimap = inputs['trimap'].numpy()
# assert np.max(trimap) <= 1 and len(np.unique(trimap)) <= 3
# sad_loss_unknown = compute_sad_loss(pred_alpha, label_alpha, trimap, area='unknown')
# mse_loss_unknown = compute_mse_loss(pred_alpha, label_alpha, trimap, area='unknown')
# self.eval_metric[inputs['data_type'][0] + '_unknown_mse (1e-3)'].append(mse_loss_unknown)
# self.eval_metric[inputs['data_type'][0] + '_unknown_sad (1e3)'].append(sad_loss_unknown)
# calculate loss
assert np.max(pred_alpha) <= 1 and np.max(label_alpha) <= 1
eval_pred = np.uint8(pred_alpha[0, 0] * 255.0 + 0.5) * 1.0
eval_gt = label_alpha[0, 0] * 255.0
detailmap = np.zeros_like(eval_gt) + 128
mse_loss_ = compute_mse_loss(eval_pred, eval_gt, detailmap)
sad_loss_ = compute_sad_loss(eval_pred, eval_gt, detailmap)[0]
mad_loss_ = compute_mad_loss(eval_pred, eval_gt, detailmap)
grad_loss_ = compute_gradient_loss(eval_pred, eval_gt, detailmap)
conn_loss_ = compute_connectivity_error(eval_pred, eval_gt, detailmap)
self.eval_metric[inputs['data_type'][0] + '_MSE'].append(mse_loss_)
self.eval_metric[inputs['data_type'][0] + '_SAD'].append(sad_loss_)
self.eval_metric[inputs['data_type'][0] + '_MAD'].append(mad_loss_)
self.eval_metric[inputs['data_type'][0] + '_Grad'].append(grad_loss_)
self.eval_metric[inputs['data_type'][0] + '_Conn'].append(conn_loss_)
# vis results
if self.save_eval_results_step != -1 and self.eval_index % self.save_eval_results_step == 0:
if self.eval_w_sam_hq_mask:
self.save_vis_results(inputs, pred_alpha, samhq_low_res_masks)
else:
self.save_vis_results(inputs, pred_alpha)
self.eval_index += 1
def save_vis_results(self, inputs, pred_alpha, samhq_low_res_masks=None):
# image
image = inputs['image'][0].permute(1, 2, 0) * 255.0
l, u, r, d = int(inputs['bbox'][0, 0, 0].item()), int(inputs['bbox'][0, 0, 1].item()), int(inputs['bbox'][0, 0, 2].item()), int(inputs['bbox'][0, 0, 3].item())
red_line = torch.tensor([[255., 0., 0.]], device=image.device, dtype=image.dtype)
image[u: d, l, :] = red_line
image[u: d, r, :] = red_line
image[u, l: r, :] = red_line
image[d, l: r, :] = red_line
image = np.uint8(image.numpy())
# trimap, pred_alpha, label_alpha
save_results = [image]
choice = [inputs['trimap'], torch.from_numpy(pred_alpha), inputs['alpha']] if 'trimap' in inputs.keys() else [torch.from_numpy(pred_alpha), inputs['alpha']]
for val in choice:
val = val[0].permute(1, 2, 0).repeat(1, 1, 3) * 255.0 + 0.5 # +0.5 and int() = round()
val = np.uint8(val.numpy())
save_results.append(val)
if samhq_low_res_masks is not None:
save_results.append(np.uint8(samhq_low_res_masks[0].permute(1, 2, 0).repeat(1, 1, 3).numpy() * 255.0))
save_results = np.concatenate(save_results, axis=1)
save_name = os.path.join(self.output_dir, inputs['image_name'][0])
Image.fromarray(save_results).save(save_name.replace('.jpg', '.png'))
def evaluate(self):
if self._distributed:
comm.synchronize()
eval_metric = comm.gather(self.eval_metric, dst=0)
if not comm.is_main_process():
return {}
merges_eval_metric = defaultdict(list)
for sub_eval_metric in eval_metric:
for key, val in sub_eval_metric.items():
merges_eval_metric[key] += val
eval_metric = merges_eval_metric
else:
eval_metric = self.eval_metric
eval_results = {}
for key, val in eval_metric.items():
if len(val) != 0:
# if 'mse' in key:
# eval_results[key] = np.array(val).mean() * 1e3
# else:
# assert 'sad' in key
# eval_results[key] = np.array(val).mean() / 1e3
eval_results[key] = np.array(val).mean()
return eval_results
if __name__ == '__main__':
pass |