Spaces:
Sleeping
Sleeping
File size: 9,420 Bytes
fdc673b 48e5328 fdc673b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import time
import torch, torchaudio, torchvision
from torch.utils.data import Dataset, DataLoader
# from torch.utils.tensorboard import SummaryWriter
import numpy as np
# 打印库的版本信息
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")
# 设备选择
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# 超参数设置
batch_size = 1
epochs = 20
# 模型保存目录
os.makedirs("./models/", exist_ok=True)
class PreprocessedDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.samples = [
os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".pt")
]
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample_path = self.samples[idx]
mfcc, image, label = torch.load(sample_path)
return mfcc.float(), image.float(), label
class WatermelonModel(torch.nn.Module):
def __init__(self):
super(WatermelonModel, self).__init__()
# LSTM for audio features
self.lstm = torch.nn.LSTM(
input_size=376, hidden_size=64, num_layers=2, batch_first=True
)
self.lstm_fc = torch.nn.Linear(
64, 128
) # Convert LSTM output to 128-dim for merging
# ResNet50 for image features
self.resnet = torchvision.models.resnet50(pretrained=True)
self.resnet.fc = torch.nn.Linear(
self.resnet.fc.in_features, 128
) # Convert ResNet output to 128-dim for merging
# Fully connected layers for final prediction
self.fc1 = torch.nn.Linear(256, 64)
self.fc2 = torch.nn.Linear(64, 1)
self.relu = torch.nn.ReLU()
def forward(self, mfcc, image):
# LSTM branch
lstm_output, _ = self.lstm(mfcc)
lstm_output = lstm_output[:, -1, :] # Use the output of the last time step
lstm_output = self.lstm_fc(lstm_output)
# ResNet branch
resnet_output = self.resnet(image)
# Concatenate LSTM and ResNet outputs
merged = torch.cat((lstm_output, resnet_output), dim=1)
# Fully connected layers
output = self.relu(self.fc1(merged))
output = self.fc2(output)
return output
def evaluate_model(model, test_loader, criterion):
model.eval()
test_loss = 0.0
mae_sum = 0.0
all_predictions = []
all_labels = []
# For debugging
debug_samples = []
with torch.no_grad():
for mfcc, image, label in test_loader:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Store debug samples
if len(debug_samples) < 5:
debug_samples.append((output.item(), label.item()))
# Calculate MSE loss
loss = criterion(output, label)
test_loss += loss.item()
# Calculate MAE
mae = torch.abs(output - label).mean()
mae_sum += mae.item()
# Store predictions and labels for additional analysis
all_predictions.extend(output.cpu().numpy())
all_labels.extend(label.cpu().numpy())
avg_loss = test_loss / len(test_loader)
avg_mae = mae_sum / len(test_loader)
# Convert to numpy arrays for easier analysis
all_predictions = np.array(all_predictions).flatten()
all_labels = np.array(all_labels).flatten()
# Print debug samples
print("\nDEBUG SAMPLES (Prediction, Label):")
for i, (pred, label) in enumerate(debug_samples):
print(f"Sample {i+1}: Prediction = {pred:.4f}, Label = {label:.4f}, Difference = {abs(pred-label):.4f}")
return avg_loss, avg_mae, all_predictions, all_labels
def train_model():
# 数据集加载
data_dir = "./processed/"
dataset = PreprocessedDataset(data_dir)
n_samples = len(dataset)
# Check label range
all_labels = []
for i in range(min(10, len(dataset))):
_, _, label = dataset[i]
all_labels.append(label)
print("\nLABEL RANGE CHECK:")
print(f"Sample labels: {all_labels}")
print(f"Min label: {min(all_labels)}, Max label: {max(all_labels)}")
train_size = int(0.7 * n_samples)
val_size = int(0.2 * n_samples)
test_size = n_samples - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
model = WatermelonModel().to(device)
# 损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# TensorBoard
writer = SummaryWriter("runs/")
global_step = 0
print(f"\033[92mINFO\033[0m: Training model for {epochs} epochs")
print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
print(f"\033[92mINFO\033[0m: Batch size: {batch_size}")
best_val_loss = float('inf')
best_model_path = None
# 训练循环
for epoch in range(epochs):
print(f"\033[92mINFO\033[0m: Training epoch ({epoch+1}/{epochs})")
model.train()
running_loss = 0.0
try:
for mfcc, image, label in train_loader:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
optimizer.zero_grad()
output = model(mfcc, image)
label = label.view(-1, 1).float()
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
writer.add_scalar("Training Loss", loss.item(), global_step)
global_step += 1
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
# 验证阶段
model.eval()
val_loss = 0.0
with torch.no_grad():
try:
for mfcc, image, label in val_loader:
mfcc, image, label = (
mfcc.to(device),
image.to(device),
label.to(device),
)
output = model(mfcc, image)
loss = criterion(output, label.view(-1, 1))
val_loss += loss.item()
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
avg_val_loss = val_loss / len(val_loader)
# 记录验证损失
writer.add_scalar("Validation Loss", avg_val_loss, epoch)
print(
f"Epoch [{epoch+1}/{epochs}], Training Loss: {running_loss/len(train_loader):.4f}, "
f"Validation Loss: {avg_val_loss:.4f}"
)
# 保存模型检查点
timestamp = time.strftime("%Y%m%d-%H%M%S")
model_path = f"models/model_{epoch+1}_{timestamp}.pt"
torch.save(model.state_dict(), model_path)
# Save the best model based on validation loss
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
best_model_path = model_path
print(f"\033[92mINFO\033[0m: New best model saved with validation loss: {best_val_loss:.4f}")
print(
f"\033[92mINFO\033[0m: Model checkpoint epoch [{epoch+1}/{epochs}] saved: {model_path}"
)
print(f"\033[92mINFO\033[0m: Training complete")
# Load the best model for testing
print(f"\033[92mINFO\033[0m: Loading best model from {best_model_path} for testing")
model.load_state_dict(torch.load(best_model_path))
# Evaluate on test set
test_loss, test_mae, predictions, labels = evaluate_model(model, test_loader, criterion)
# Calculate additional metrics
max_error = np.max(np.abs(predictions - labels))
min_error = np.min(np.abs(predictions - labels))
print("\n" + "="*50)
print("TEST RESULTS:")
print(f"Test Loss (MSE): {test_loss:.4f}")
print(f"Mean Absolute Error: {test_mae:.4f}")
print(f"Maximum Absolute Error: {max_error:.4f}")
print(f"Minimum Absolute Error: {min_error:.4f}")
# Add test results to TensorBoard
writer.add_scalar("Test/MSE", test_loss, 0)
writer.add_scalar("Test/MAE", test_mae, 0)
writer.add_scalar("Test/Max_Error", max_error, 0)
writer.add_scalar("Test/Min_Error", min_error, 0)
# Create a histogram of absolute errors
abs_errors = np.abs(predictions - labels)
writer.add_histogram("Test/Absolute_Errors", abs_errors, 0)
print("="*50)
writer.close()
if __name__ == "__main__":
train_model()
|