File size: 9,420 Bytes
fdc673b
 
 
 
 
48e5328
fdc673b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import time

import torch, torchaudio, torchvision
from torch.utils.data import Dataset, DataLoader
# from torch.utils.tensorboard import SummaryWriter
import numpy as np

# 打印库的版本信息
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")

# 设备选择
device = torch.device(
    "cuda"
    if torch.cuda.is_available()
    else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")

# 超参数设置
batch_size = 1
epochs = 20

# 模型保存目录
os.makedirs("./models/", exist_ok=True)


class PreprocessedDataset(Dataset):
    def __init__(self, data_dir):
        self.data_dir = data_dir
        self.samples = [
            os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".pt")
        ]

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        sample_path = self.samples[idx]
        mfcc, image, label = torch.load(sample_path)
        return mfcc.float(), image.float(), label


class WatermelonModel(torch.nn.Module):
    def __init__(self):
        super(WatermelonModel, self).__init__()

        # LSTM for audio features
        self.lstm = torch.nn.LSTM(
            input_size=376, hidden_size=64, num_layers=2, batch_first=True
        )
        self.lstm_fc = torch.nn.Linear(
            64, 128
        )  # Convert LSTM output to 128-dim for merging

        # ResNet50 for image features
        self.resnet = torchvision.models.resnet50(pretrained=True)
        self.resnet.fc = torch.nn.Linear(
            self.resnet.fc.in_features, 128
        )  # Convert ResNet output to 128-dim for merging

        # Fully connected layers for final prediction
        self.fc1 = torch.nn.Linear(256, 64)
        self.fc2 = torch.nn.Linear(64, 1)
        self.relu = torch.nn.ReLU()

    def forward(self, mfcc, image):
        # LSTM branch
        lstm_output, _ = self.lstm(mfcc)
        lstm_output = lstm_output[:, -1, :]  # Use the output of the last time step
        lstm_output = self.lstm_fc(lstm_output)

        # ResNet branch
        resnet_output = self.resnet(image)

        # Concatenate LSTM and ResNet outputs
        merged = torch.cat((lstm_output, resnet_output), dim=1)

        # Fully connected layers
        output = self.relu(self.fc1(merged))
        output = self.fc2(output)

        return output


def evaluate_model(model, test_loader, criterion):
    model.eval()
    test_loss = 0.0
    mae_sum = 0.0
    all_predictions = []
    all_labels = []
    
    # For debugging
    debug_samples = []
    
    with torch.no_grad():
        for mfcc, image, label in test_loader:
            mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
            output = model(mfcc, image)
            label = label.view(-1, 1).float()
            
            # Store debug samples
            if len(debug_samples) < 5:
                debug_samples.append((output.item(), label.item()))
            
            # Calculate MSE loss
            loss = criterion(output, label)
            test_loss += loss.item()
            
            # Calculate MAE
            mae = torch.abs(output - label).mean()
            mae_sum += mae.item()
            
            # Store predictions and labels for additional analysis
            all_predictions.extend(output.cpu().numpy())
            all_labels.extend(label.cpu().numpy())
    
    avg_loss = test_loss / len(test_loader)
    avg_mae = mae_sum / len(test_loader)
    
    # Convert to numpy arrays for easier analysis
    all_predictions = np.array(all_predictions).flatten()
    all_labels = np.array(all_labels).flatten()
    
    # Print debug samples
    print("\nDEBUG SAMPLES (Prediction, Label):")
    for i, (pred, label) in enumerate(debug_samples):
        print(f"Sample {i+1}: Prediction = {pred:.4f}, Label = {label:.4f}, Difference = {abs(pred-label):.4f}")
    
    return avg_loss, avg_mae, all_predictions, all_labels


def train_model():
    # 数据集加载
    data_dir = "./processed/"
    dataset = PreprocessedDataset(data_dir)
    n_samples = len(dataset)
    
    # Check label range
    all_labels = []
    for i in range(min(10, len(dataset))):
        _, _, label = dataset[i]
        all_labels.append(label)
    
    print("\nLABEL RANGE CHECK:")
    print(f"Sample labels: {all_labels}")
    print(f"Min label: {min(all_labels)}, Max label: {max(all_labels)}")
    
    train_size = int(0.7 * n_samples)
    val_size = int(0.2 * n_samples)
    test_size = n_samples - train_size - val_size

    train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
        dataset, [train_size, val_size, test_size]
    )

    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

    model = WatermelonModel().to(device)

    # 损失函数和优化器
    criterion = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    # TensorBoard
    writer = SummaryWriter("runs/")
    global_step = 0

    print(f"\033[92mINFO\033[0m: Training model for {epochs} epochs")
    print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
    print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
    print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
    print(f"\033[92mINFO\033[0m: Batch size: {batch_size}")

    best_val_loss = float('inf')
    best_model_path = None

    # 训练循环
    for epoch in range(epochs):
        print(f"\033[92mINFO\033[0m: Training epoch ({epoch+1}/{epochs})")

        model.train()
        running_loss = 0.0
        try:
            for mfcc, image, label in train_loader:
                mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)

                optimizer.zero_grad()
                output = model(mfcc, image)
                label = label.view(-1, 1).float()
                loss = criterion(output, label)
                loss.backward()
                optimizer.step()

                running_loss += loss.item()
                writer.add_scalar("Training Loss", loss.item(), global_step)
                global_step += 1
        except Exception as e:
            print(f"\033[91mERR!\033[0m: {e}")

        # 验证阶段
        model.eval()
        val_loss = 0.0
        with torch.no_grad():
            try:
                for mfcc, image, label in val_loader:
                    mfcc, image, label = (
                        mfcc.to(device),
                        image.to(device),
                        label.to(device),
                    )
                    output = model(mfcc, image)
                    loss = criterion(output, label.view(-1, 1))
                    val_loss += loss.item()
            except Exception as e:
                print(f"\033[91mERR!\033[0m: {e}")

        avg_val_loss = val_loss / len(val_loader)
        
        # 记录验证损失
        writer.add_scalar("Validation Loss", avg_val_loss, epoch)

        print(
            f"Epoch [{epoch+1}/{epochs}], Training Loss: {running_loss/len(train_loader):.4f}, "
            f"Validation Loss: {avg_val_loss:.4f}"
        )

        # 保存模型检查点
        timestamp = time.strftime("%Y%m%d-%H%M%S")
        model_path = f"models/model_{epoch+1}_{timestamp}.pt"
        torch.save(model.state_dict(), model_path)
        
        # Save the best model based on validation loss
        if avg_val_loss < best_val_loss:
            best_val_loss = avg_val_loss
            best_model_path = model_path
            print(f"\033[92mINFO\033[0m: New best model saved with validation loss: {best_val_loss:.4f}")

        print(
            f"\033[92mINFO\033[0m: Model checkpoint epoch [{epoch+1}/{epochs}] saved: {model_path}"
        )

    print(f"\033[92mINFO\033[0m: Training complete")
    
    # Load the best model for testing
    print(f"\033[92mINFO\033[0m: Loading best model from {best_model_path} for testing")
    model.load_state_dict(torch.load(best_model_path))
    
    # Evaluate on test set
    test_loss, test_mae, predictions, labels = evaluate_model(model, test_loader, criterion)
    
    # Calculate additional metrics
    max_error = np.max(np.abs(predictions - labels))
    min_error = np.min(np.abs(predictions - labels))
    
    print("\n" + "="*50)
    print("TEST RESULTS:")
    print(f"Test Loss (MSE): {test_loss:.4f}")
    print(f"Mean Absolute Error: {test_mae:.4f}")
    print(f"Maximum Absolute Error: {max_error:.4f}")
    print(f"Minimum Absolute Error: {min_error:.4f}")
    
    # Add test results to TensorBoard
    writer.add_scalar("Test/MSE", test_loss, 0)
    writer.add_scalar("Test/MAE", test_mae, 0)
    writer.add_scalar("Test/Max_Error", max_error, 0)
    writer.add_scalar("Test/Min_Error", min_error, 0)
    
    # Create a histogram of absolute errors
    abs_errors = np.abs(predictions - labels)
    writer.add_histogram("Test/Absolute_Errors", abs_errors, 0)
    
    print("="*50)
    
    writer.close()


if __name__ == "__main__":
    train_model()