File size: 32,080 Bytes
4ae2215
658835d
4ae2215
 
 
d7f22c4
4ae2215
 
 
 
 
 
 
 
 
658835d
4ae2215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3011ece
4ae2215
 
 
 
d7f22c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cfeca6
d7f22c4
 
 
d13869d
 
4ae2215
d7f22c4
d13869d
 
 
 
 
4ae2215
d13869d
 
d7f22c4
d13869d
 
d7f22c4
 
 
 
 
 
d13869d
 
d7f22c4
 
 
 
 
 
 
 
 
 
 
d13869d
d7f22c4
d13869d
 
 
4ae2215
d13869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae2215
d13869d
 
 
 
 
d7f22c4
d13869d
 
 
 
 
d7f22c4
d13869d
 
 
 
 
 
 
 
 
d7f22c4
d13869d
d7f22c4
d13869d
 
 
 
 
 
 
d7f22c4
d13869d
 
d7f22c4
 
 
 
d13869d
d7f22c4
 
d13869d
d7f22c4
d13869d
d7f22c4
 
 
 
 
 
 
 
 
 
d13869d
 
70e9521
d13869d
 
 
d7f22c4
d13869d
 
d7f22c4
 
 
 
d13869d
 
 
70e9521
4ae2215
d7f22c4
70e9521
 
 
 
d13869d
70e9521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13869d
70e9521
 
 
d13869d
70e9521
d13869d
 
 
 
 
 
70e9521
4ae2215
70e9521
 
 
d13869d
 
70e9521
d13869d
 
 
 
d7f22c4
4ae2215
d7f22c4
 
d13869d
d7f22c4
d13869d
d7f22c4
d13869d
 
 
4ae2215
d13869d
 
 
 
 
4ae2215
d13869d
 
 
 
 
 
 
d7f22c4
70e9521
d13869d
70e9521
d13869d
 
70e9521
 
 
d13869d
70e9521
d13869d
 
 
70e9521
 
 
 
d13869d
 
 
 
4ae2215
d13869d
 
70e9521
 
d13869d
70e9521
d13869d
 
 
70e9521
d13869d
 
 
 
 
70e9521
d13869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70e9521
 
 
 
d13869d
70e9521
d13869d
 
 
 
 
 
 
 
 
 
 
 
d7f22c4
d13869d
 
 
 
 
 
d7f22c4
d13869d
 
d7f22c4
 
 
a1f65bd
d7f22c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13869d
d7f22c4
 
 
 
 
 
 
 
48db392
 
 
 
 
 
 
 
 
d7f22c4
 
48db392
 
d7f22c4
 
48db392
 
 
 
4ae2215
48db392
 
 
 
d7f22c4
48db392
 
 
 
4ae2215
48db392
 
 
 
 
 
d7f22c4
48db392
 
 
 
 
d7f22c4
48db392
d7f22c4
48db392
d7f22c4
48db392
d7f22c4
48db392
d7f22c4
48db392
d7f22c4
48db392
 
 
 
 
 
 
 
 
d7f22c4
48db392
c508945
 
d7f22c4
48db392
d7f22c4
48db392
d7f22c4
 
48db392
d7f22c4
48db392
 
 
d7f22c4
48db392
 
 
a010f18
48db392
 
d13869d
48db392
 
 
4ae2215
d7f22c4
48db392
4ae2215
d7f22c4
 
48db392
46a0eb0
d7f22c4
 
48db392
 
 
d7f22c4
 
5cfeca6
48db392
d7f22c4
c508945
 
d7f22c4
4ae2215
c508945
 
 
 
d7f22c4
48db392
d7f22c4
70e9521
d7f22c4
48db392
 
70e9521
48db392
70e9521
48db392
 
70e9521
 
 
 
d7f22c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48db392
 
 
d7f22c4
d13869d
d7f22c4
4ae2215
 
d7f22c4
d13869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7f22c4
d13869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7f22c4
 
d13869d
 
 
 
 
 
 
 
 
 
 
d7f22c4
d13869d
 
 
 
 
d7f22c4
d13869d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae2215
d13869d
 
 
 
d7f22c4
d13869d
d7f22c4
 
d13869d
 
d7f22c4
d13869d
 
 
 
 
 
d7f22c4
d13869d
 
 
 
d7f22c4
 
d13869d
 
 
 
 
9806e04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13869d
301f27c
a281e22
10365a6
 
2504ed1
 
 
a281e22
522ba5b
d13869d
1338830
 
 
 
 
 
 
 
 
 
2d2d26d
 
 
 
 
 
 
 
d13869d
1338830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7f22c4
1338830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c750ff
1338830
 
d13869d
 
 
d7f22c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13869d
 
 
d7f22c4
c508945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d76f0a1
c508945
 
 
10365a6
d13869d
 
e7f0523
c508945
d13869d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
import logging
import os
import re
import traceback
from time import time as ttime

import gradio as gr
import gradio.themes as themes
import librosa
import nltk
import numpy as np
import spaces
import torch
import torchaudio
from gradio.themes.utils import fonts
from huggingface_hub import snapshot_download
from transformers.models.auto.modeling_auto import AutoModelForMaskedLM
from transformers.models.auto.tokenization_auto import AutoTokenizer

from AR.models.structs import T2SRequest
from AR.models.t2s_model_flash_attn import CUDAGraphRunner
from feature_extractor import cnhubert
from module.mel_processing import spectrogram_torch
from module.models import SynthesizerTrn
from sv import SV
from text import chinese, cleaned_text_to_sequence
from text.cleaner import clean_text
from text.LangSegmenter import LangSegmenter
from tools.i18n.i18n import I18nAuto

logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
logging.getLogger("python_multipart.multipart").setLevel(logging.ERROR)
logging.getLogger("split_lang.split.splitter").setLevel(logging.ERROR)
logging.getLogger("filelock").setLevel(logging.INFO)

os.makedirs("pretrained_models", exist_ok=True)

nltk.download("averaged_perceptron_tagger_eng")

snapshot_download(
    repo_id="lj1995/GPT-SoVITS",
    repo_type="model",
    allow_patterns="chinese*",
    local_dir="pretrained_models",
)
snapshot_download(
    repo_id="lj1995/GPT-SoVITS",
    repo_type="model",
    allow_patterns="s1v3.ckpt",
    local_dir="pretrained_models",
)
snapshot_download(
    repo_id="lj1995/GPT-SoVITS",
    repo_type="model",
    allow_patterns="sv*",
    local_dir="pretrained_models",
)
snapshot_download(
    repo_id="lj1995/GPT-SoVITS",
    repo_type="model",
    allow_patterns="v2Pro/s2Gv2ProPlus.pth",
    local_dir="pretrained_models",
)

version = "v2"  # os.environ.get("version","v2")
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
cnhubert.cnhubert_base_path = cnhubert_base_path

punctuation = set(["!", "?", "…", ",", ".", "-", " "])


i18n = I18nAuto(language="Auto")

if torch.cuda.is_available():
    device = "cuda"
    is_half = True
else:
    device = "cpu"
    is_half = False

dict_language_v1 = {
    i18n("中文"): "all_zh",  # 全部按中文识别
    i18n("英文"): "en",  # 全部按英文识别#######不变
    i18n("日文"): "all_ja",  # 全部按日文识别
    i18n("中英混合"): "zh",  # 按中英混合识别####不变
    i18n("日英混合"): "ja",  # 按日英混合识别####不变
    i18n("多语种混合"): "auto",  # 多语种启动切分识别语种
}
dict_language_v2 = {
    i18n("中文"): "all_zh",  # 全部按中文识别
    i18n("英文"): "en",  # 全部按英文识别#######不变
    i18n("日文"): "all_ja",  # 全部按日文识别
    i18n("粤语"): "all_yue",  # 全部按中文识别
    i18n("韩文"): "all_ko",  # 全部按韩文识别
    i18n("中英混合"): "zh",  # 按中英混合识别####不变
    i18n("日英混合"): "ja",  # 按日英混合识别####不变
    i18n("粤英混合"): "yue",  # 按粤英混合识别####不变
    i18n("韩英混合"): "ko",  # 按韩英混合识别####不变
    i18n("多语种混合"): "auto",  # 多语种启动切分识别语种
    i18n("多语种混合(粤语)"): "auto_yue",  # 多语种启动切分识别语种
}
dict_language = dict_language_v1 if version == "v1" else dict_language_v2

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half is True:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)


def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    return phone_level_feature.T


class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")


ssl_model = cnhubert.get_model()
if is_half is True:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)


def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
    global vq_model, hps, version, dict_language
    dict_s2 = torch.load(sovits_path, map_location="cpu")
    hps = dict_s2["config"]
    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"
    if dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
        hps.model.version = "v1"
    else:
        hps.model.version = "v2"
    version = hps.model.version
    # print("sovits版本:",hps.model.version)
    vq_model = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    )
    if "pretrained" not in sovits_path:
        del vq_model.enc_q
    if is_half == True:
        vq_model = vq_model.half().to(device)
    else:
        vq_model = vq_model.to(device)
    vq_model.eval()
    print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
    dict_language = dict_language_v1 if version == "v1" else dict_language_v2
    if prompt_language is not None and text_language is not None:
        if prompt_language in list(dict_language.keys()):
            prompt_text_update, prompt_language_update = (
                {"__type__": "update"},
                {"__type__": "update", "value": prompt_language},
            )
        else:
            prompt_text_update = {"__type__": "update", "value": ""}
            prompt_language_update = {"__type__": "update", "value": i18n("中文")}
        if text_language in list(dict_language.keys()):
            text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
        else:
            text_update = {"__type__": "update", "value": ""}
            text_language_update = {"__type__": "update", "value": i18n("中文")}
        return (
            {"__type__": "update", "choices": list(dict_language.keys())},
            {"__type__": "update", "choices": list(dict_language.keys())},
            prompt_text_update,
            prompt_language_update,
            text_update,
            text_language_update,
        )


change_sovits_weights("pretrained_models/v2Pro/s2Gv2ProPlus.pth")


def change_gpt_weights(gpt_path):
    global t2s_model, config
    dict_s1 = torch.load(gpt_path, map_location="cpu")
    config = dict_s1["config"]
    t2s_model = CUDAGraphRunner(
        CUDAGraphRunner.load_decoder(gpt_path), torch.device(device), torch.float16 if is_half else torch.float32
    )
    total = sum(p.numel() for p in t2s_model.decoder_model.parameters())
    print("Number of parameter: %.2fM" % (total / 1e6))


change_gpt_weights("pretrained_models/s1v3.ckpt")


sv_cn_model = SV(device, is_half)

resample_transform_dict = {}


def resample(audio_tensor, sr0, sr1, device):
    global resample_transform_dict
    key = "%s-%s-%s" % (sr0, sr1, str(device))
    if key not in resample_transform_dict:
        resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
    return resample_transform_dict[key](audio_tensor)


def get_spepc(hps, filename, dtype, device, is_v2pro=False):
    sr1 = int(hps.data.sampling_rate)
    audio, sr0 = torchaudio.load(filename)
    if sr0 != sr1:
        audio = audio.to(device)
        if audio.shape[0] == 2:
            audio = audio.mean(0).unsqueeze(0)
        audio = resample(audio, sr0, sr1, device)
    else:
        audio = audio.to(device)
        if audio.shape[0] == 2:
            audio = audio.mean(0).unsqueeze(0)

    maxx = audio.abs().max()
    if maxx > 1:
        audio /= min(2, maxx)
    spec = spectrogram_torch(
        audio,
        hps.data.filter_length,
        hps.data.sampling_rate,
        hps.data.hop_length,
        hps.data.win_length,
        center=False,
    )
    spec = spec.to(dtype)
    if is_v2pro is True:
        audio = resample(audio, sr1, 16000, device).to(dtype)
    return spec, audio


def clean_text_inf(text, language, version):
    language = language.replace("all_", "")
    phones, word2ph, norm_text = clean_text(text, language, version)
    phones = cleaned_text_to_sequence(phones, version)
    return phones, word2ph, norm_text


dtype = torch.float16 if is_half is True else torch.float32


def get_bert_inf(phones, word2ph, norm_text, language):
    language = language.replace("all_", "")
    if language == "zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)  # .to(dtype)
    else:
        bert = torch.zeros(
            (1024, len(phones)),
            dtype=torch.float16 if is_half is True else torch.float32,
        ).to(device)

    return bert


splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…"}


def get_first(text):
    pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
    text = re.split(pattern, text)[0].strip()
    return text


def get_phones_and_bert(text, language, version, final=False):
    if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
        formattext = text
        while "  " in formattext:
            formattext = formattext.replace("  ", " ")
        if language == "all_zh":
            if re.search(r"[A-Za-z]", formattext):
                formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
                formattext = chinese.mix_text_normalize(formattext)
                return get_phones_and_bert(formattext, "zh", version)
            else:
                phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
                bert = get_bert_feature(norm_text, word2ph).to(device)
        elif language == "all_yue" and re.search(r"[A-Za-z]", formattext):
            formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
            formattext = chinese.mix_text_normalize(formattext)
            return get_phones_and_bert(formattext, "yue", version)
        else:
            phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
            bert = torch.zeros(
                (1024, len(phones)),
                dtype=torch.float16 if is_half is True else torch.float32,
            ).to(device)
    elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
        textlist = []
        langlist = []
        if language == "auto":
            for tmp in LangSegmenter.getTexts(text):
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        elif language == "auto_yue":
            for tmp in LangSegmenter.getTexts(text):
                if tmp["lang"] == "zh":
                    tmp["lang"] = "yue"
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        else:
            for tmp in LangSegmenter.getTexts(text):
                if tmp["lang"] == "en":
                    langlist.append(tmp["lang"])
                else:
                    # 因无法区别中日韩文汉字,以用户输入为准
                    langlist.append(language)
                textlist.append(tmp["text"])
        print(textlist)
        print(langlist)
        phones_list = []
        bert_list = []
        norm_text_list = []
        for i in range(len(textlist)):
            lang = langlist[i]
            phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
            bert = get_bert_inf(phones, word2ph, norm_text, lang)
            phones_list.append(phones)
            norm_text_list.append(norm_text)
            bert_list.append(bert)
        bert = torch.cat(bert_list, dim=1)
        phones = sum(phones_list, [])
        norm_text = "".join(norm_text_list)

    if not final and len(phones) < 6:
        return get_phones_and_bert("." + text, language, version, final=True)

    return phones, bert.to(dtype), norm_text


def merge_short_text_in_array(texts, threshold):
    if (len(texts)) < 2:
        return texts
    result = []
    text = ""
    for ele in texts:
        text += ele
        if len(text) >= threshold:
            result.append(text)
            text = ""
    if len(text) > 0:
        if len(result) == 0:
            result.append(text)
        else:
            result[len(result) - 1] += text
    return result


##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
# cache_tokens={}#暂未实现清理机制
cache = {}


@spaces.GPU
def get_tts_wav(
    ref_wav_path,
    prompt_text,
    prompt_language,
    text,
    text_language,
    how_to_cut=i18n("不切"),
    top_k=20,
    top_p=0.6,
    temperature=0.6,
    ref_free=False,
    speed=1,
    if_freeze=False,
    inp_refs=123,
):
    global cache
    if ref_wav_path:
        pass
    else:
        gr.Warning(i18n("请上传参考音频"))
    if text:
        pass
    else:
        gr.Warning(i18n("请填入推理文本"))
    t = []
    if prompt_text is None or len(prompt_text) == 0:
        ref_free = True
    t0 = ttime()
    prompt_language = dict_language[prompt_language]
    text_language = dict_language[text_language]

    if not ref_free:
        prompt_text = prompt_text.strip("\n")
        if prompt_text[-1] not in splits:
            prompt_text += "。" if prompt_language != "en" else "."
        print(i18n("实际输入的参考文本:"), prompt_text)
    text = text.strip("\n")
    if text[0] not in splits and len(get_first(text)) < 4:
        text = "。" + text if text_language != "en" else "." + text

    print(i18n("实际输入的目标文本:"), text)
    zero_wav = np.zeros(
        int(hps.data.sampling_rate * 0.3),
        dtype=np.float16 if is_half is True else np.float32,
    )
    if not ref_free:
        with torch.no_grad():
            wav16k, sr = librosa.load(ref_wav_path, sr=16000)
            if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
                gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
                raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
            wav16k = torch.from_numpy(wav16k)
            zero_wav_torch = torch.from_numpy(zero_wav)
            if is_half is True:
                wav16k = wav16k.half().to(device)
                zero_wav_torch = zero_wav_torch.half().to(device)
            else:
                wav16k = wav16k.to(device)
                zero_wav_torch = zero_wav_torch.to(device)
            wav16k = torch.cat([wav16k, zero_wav_torch])
            ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)  # .float()
            codes = vq_model.extract_latent(ssl_content)
            prompt_semantic = codes[0, 0]
            prompt = prompt_semantic.unsqueeze(0).to(device)

    t1 = ttime()
    t.append(t1 - t0)

    if how_to_cut == i18n("凑四句一切"):
        text = cut1(text)
    elif how_to_cut == i18n("凑50字一切"):
        text = cut2(text)
    elif how_to_cut == i18n("按中文句号。切"):
        text = cut3(text)
    elif how_to_cut == i18n("按英文句号.切"):
        text = cut4(text)
    elif how_to_cut == i18n("按标点符号切"):
        text = cut5(text)
    while "\n\n" in text:
        text = text.replace("\n\n", "\n")
    print(i18n("实际输入的目标文本(切句后):"), text)
    texts = text.split("\n")
    texts = process_text(texts)
    texts = merge_short_text_in_array(texts, 5)
    audio_opt = []
    if not ref_free:
        phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)

    infer_speed: list[float] = []

    for i_text, text in enumerate(texts):
        # 解决输入目标文本的空行导致报错的问题
        if len(text.strip()) == 0:
            continue
        if text[-1] not in splits:
            text += "。" if text_language != "en" else "."
        print(i18n("实际输入的目标文本(每句):"), text)
        phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version)
        print(i18n("前端处理后的文本(每句):"), norm_text2)
        if not ref_free:
            bert = torch.cat([bert1, bert2], 1)
            all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
        else:
            bert = bert2
            all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)

        bert = bert.to(device).unsqueeze(0)
        all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)

        t2 = ttime()
        # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
        # print(cache.keys(),if_freeze)
        if i_text in cache and if_freeze is True:
            pred_semantic = cache[i_text]
        else:
            with torch.no_grad():
                t2s_request = T2SRequest(
                    [all_phoneme_ids.squeeze(0)],
                    all_phoneme_len,
                    all_phoneme_ids.new_zeros((1, 0)) if ref_free else prompt,
                    [bert.squeeze(0)],
                    valid_length=1,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    early_stop_num=1500,
                    use_cuda_graph=True,
                    # debug=True,
                )
                t2s_result = t2s_model.generate(t2s_request)

                if t2s_result.exception is not None:
                    print(t2s_result.traceback)
                    raise t2s_result.exception

                infer_speed.append(t2s_result.infer_speed)
                pred_semantic = t2s_result.result
                assert pred_semantic
                cache[i_text] = pred_semantic
        t3 = ttime()
        refers = []
        sv_emb = []
        if inp_refs:
            for path in inp_refs:
                try:
                    refer, audio_tensor = get_spepc(hps, path.name, dtype, device, is_v2pro=True)
                    refers.append(refer)
                    sv_emb.append(sv_cn_model.compute_embedding3(audio_tensor))
                except:
                    traceback.print_exc()
        if len(refers) == 0:
            refers, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device, is_v2pro=True)
            refers = [refers]
            sv_emb = [sv_cn_model.compute_embedding3(audio_tensor)]
        audio = (
            vq_model.decode(
                pred_semantic[0].unsqueeze(0).unsqueeze(0),
                torch.LongTensor(phones2).to(device).unsqueeze(0),
                refers,
                speed=speed,
                sv_emb=sv_emb,
            )
            .detach()
            .cpu()
            .numpy()[0][0]
        )
        max_audio = np.abs(audio).max()  # 简单防止16bit爆音
        if max_audio > 1:
            audio /= max_audio
        audio_opt.append(audio)
        audio_opt.append(zero_wav)
        t4 = ttime()
        t.extend([t2 - t1, t3 - t2, t4 - t3])
        t1 = ttime()
    print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])))
    gr.Info(f"{sum(infer_speed) / len(infer_speed):.2f} Token/s", title="Infer Speed")
    gr.Info("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])), title="Time Stamps")
    yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16)


def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def cut1(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 4))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
    else:
        opts = [inp]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut2(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return inp
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    # print(opts)
    if len(opts) > 1 and len(opts[-1]) < 50:  ##如果最后一个太短了,和前一个合一起
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut3(inp):
    inp = inp.strip("\n")
    opts = ["%s" % item for item in inp.strip("。").split("。")]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut4(inp):
    inp = inp.strip("\n")
    opts = ["%s" % item for item in inp.strip(".").split(".")]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
    inp = inp.strip("\n")
    punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
    mergeitems = []
    items = []

    for i, char in enumerate(inp):
        if char in punds:
            if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
                items.append(char)
            else:
                items.append(char)
                mergeitems.append("".join(items))
                items = []
        else:
            items.append(char)

    if items:
        mergeitems.append("".join(items))

    opt = [item for item in mergeitems if not set(item).issubset(punds)]
    return "\n".join(opt)


def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split(r"(\d+)", s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts


def process_text(texts):
    _text = []
    if all(text in [None, " ", "\n", ""] for text in texts):
        raise ValueError(i18n("请输入有效文本"))
    for text in texts:
        if text in [None, " ", ""]:
            pass
        else:
            _text.append(text)
    return _text


def html_center(text, label="p"):
    return f"""<div style="text-align: center; margin: 100; padding: 50;">
                <{label} style="margin: 0; padding: 0;">{text}</{label}>
                </div>"""


def html_left(text, label="p"):
    return f"""<div style="text-align: left; margin: 0; padding: 0;">
                <{label} style="margin: 0; padding: 0;">{text}</{label}>
                </div>"""


theme = themes.Soft(
    font=(
        "-apple-system",
        fonts.GoogleFont("Inter"),
        fonts.GoogleFont("Quicksand"),
        "ui-sans-serif",
        "sans-serif",
    )
)
theme.block_border_width = "1px"

with gr.Blocks(
    title="GPT-SoVITS WebUI",
    theme=theme,
    analytics_enabled=False,
) as app:
    gr.Markdown(
        value="""# GPT-SoVITS-ProPlus Zero-shot TTS Demo
## https://github.com/RVC-Boss/GPT-SoVITS
Input 3 to 10s reference audio to guide the time-bre, speed, emotion of voice, and generate the speech you want by input the inference text. <br>
输入3至10秒的参考音频来引导待合成语音的音色、语速和情感,然后输入待合成目标文本,生成目标语音. <br>
Cross-lingual Support: Inference in languages different from the training dataset, currently supporting English, Japanese, Korean and Cantonese.<br>
目前支持中日英韩粤跨语种合成。<br>
This demo is open source under the MIT license. The author does not have any control over it. Users who use the software and distribute the sounds exported by the software are solely responsible. If you do not agree with this clause, you cannot use or reference any codes and files within this demo. <br>
本demo以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. 如不认可该条款, 则不能使用或引用该demo内的任何代码和文件.
"""
    )
    gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3"))
    with gr.Row(equal_height=True):
        inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
        with gr.Column():
            ref_text_free = gr.Checkbox(
                label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"),
                value=False,
                interactive=True,
                show_label=True,
            )
            prompt_text = gr.Textbox(
                label=i18n("参考音频的文本"),
                value="",
                lines=3,
                max_lines=3,
                info=i18n(
                    "使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。"
                ),
            )
        prompt_language = gr.Dropdown(
            label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
        )
        inp_refs = gr.File(
            label=i18n(
                "可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。"
            ),
            file_count="multiple",
        )
    gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3"))
    with gr.Row(equal_height=True):
        with gr.Column():
            text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
        with gr.Column():
            text_language = gr.Dropdown(
                label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"),
                choices=list(dict_language.keys()),
                value=i18n("中文"),
            )
            how_to_cut = gr.Dropdown(
                label=i18n("怎么切"),
                choices=[
                    i18n("不切"),
                    i18n("凑四句一切"),
                    i18n("凑50字一切"),
                    i18n("按中文句号。切"),
                    i18n("按英文句号.切"),
                    i18n("按标点符号切"),
                ],
                value=i18n("凑四句一切"),
                interactive=True,
            )
            gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
            if_freeze = gr.Checkbox(
                label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"),
                value=False,
                interactive=True,
                show_label=True,
            )
            speed = gr.Slider(minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True)
            gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
            top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True)
            top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True)
            temperature = gr.Slider(
                minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True
            )
    with gr.Row(equal_height=True):
        inference_button = gr.Button(i18n("合成语音"), variant="primary", size="lg")
        output = gr.Audio(label=i18n("输出的语音"))

        inference_button.click(
            get_tts_wav,
            [
                inp_ref,
                prompt_text,
                prompt_language,
                text,
                text_language,
                how_to_cut,
                top_k,
                top_p,
                temperature,
                ref_text_free,
                speed,
                if_freeze,
                inp_refs,
            ],
            [output],
        )

if __name__ == "__main__":
    import tempfile
    import wave

    with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_file:
        file_name = temp_file.name
        with wave.open(temp_file, "w") as wav_file:
            channels = 1
            sample_width = 2
            sample_rate = 44100
            duration = 5
            frequency = 440.0

            t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
            sine_wave = np.sin(2 * np.pi * frequency * t)  # Sine Wave
            int_wave = (sine_wave * 32767).astype(np.int16)

            wav_file.setnchannels(channels)  # pylint: disable=no-member
            wav_file.setsampwidth(sample_width)  # pylint: disable=no-member
            wav_file.setframerate(sample_rate)  # pylint: disable=no-member
            wav_file.writeframes(int_wave.tobytes())  # pylint: disable=no-member

            gen = get_tts_wav(
                ref_wav_path=file_name,
                prompt_text="",
                prompt_language=i18n("中文"),
                text="犯大吴疆土者,盛必击而破之,犯大吴疆土者,盛必击而破之,犯大吴疆土者,盛必击而破之,犯大吴疆土者,盛必击而破之",
                text_language=i18n("中文"),
                inp_refs=[],
            )
            next(gen)

    app.queue().launch(
        server_name="0.0.0.0",
        inbrowser=True,
        show_api=False,
        allowed_paths=["/"],
    )