Spaces:
Sleeping
Sleeping
File size: 7,097 Bytes
ae46fe0 d72a50f ae46fe0 c3ad4b8 ae46fe0 c3ad4b8 ae46fe0 c3ad4b8 6390a01 c3ad4b8 ae46fe0 d72a50f c3ad4b8 ae46fe0 c3ad4b8 ae46fe0 c3ad4b8 ae46fe0 c3ad4b8 ae46fe0 c3ad4b8 0010e43 c3ad4b8 0010e43 d72a50f 0010e43 d72a50f 0010e43 ae46fe0 c3ad4b8 ae46fe0 c3ad4b8 ae46fe0 c3ad4b8 ae46fe0 d72a50f c3ad4b8 ae46fe0 c3ad4b8 ae46fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import whisper
from langchain_openai import ChatOpenAI
from langchain_openai import AzureChatOpenAI
from utils import RefineDataSummarizer
from utils import (
prompt_template,
refine_template,
prompt_template_bullet_point,
refine_prompt_template_bullet_point
)
import os
def get_prompt_examples():
examples=[
["Regular Template: ", prompt_template, refine_template],
["Bullet Point Template: ", prompt_template_bullet_point, refine_prompt_template_bullet_point],
["Empty Template: ", '{text}', '{text}'],
]
return examples
def convert_to_time_format(seconds_float):
# Split the input into whole seconds and fractional part (milliseconds)
seconds, milliseconds = divmod(seconds_float, 1)
milliseconds = round(milliseconds * 1000) # Convert fractional part to milliseconds
# Convert the whole seconds into hours, minutes, and remaining seconds
minutes, seconds = divmod(int(seconds), 60)
hours, minutes = divmod(minutes, 60)
# Format the time components into HH:MM:SS:OO
time_format = f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
return time_format
def time_stamped_text(transcript_result):
text = ''
for idx, segment in enumerate(transcript_result['segments']):
start_stamp = segment["start"]
end_stamp = segment["end"]
sentence = segment["text"].strip()
text += f"{idx + 1}\n"
text += f"{convert_to_time_format(start_stamp)} --> {convert_to_time_format(end_stamp)}\n{sentence}\n\n"
return text.strip()
def transcript(file_dir, model_type, time_stamp):
model_dir = os.path.join('models', model_type)
# model_dir = "E:\\Whisper\\" + model_type
model = whisper.load_model(model_dir)
result = model.transcribe(file_dir, language='English', task='transcribe')
if time_stamp:
text = time_stamped_text(result)
else:
lines = [s['text'] for s in result['segments']]
text = ''
for line in lines:
text += f"{line}\n"
text = text.strip()
with open("Transcript.txt", 'w') as file:
file.write(text)
return [text, "Transcript.txt"]
def upload_file(file_paths):
return file_paths
def summary(text, chunk_num, chunk_overlap, llm_type, prompt, refine_prompt):
#if user_api == "Not Provided":
# api_key = os.getenv("openai_api")
#deployment_name = llm_type
#else:
# api_key = user_api
#api_key = api_key.strip()
# llm = ChatOpenAI(temperature=1, openai_api_key=api_key, model_name=llm_type)
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("azure_api")
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("azure_endpoint")
openai_api_version=os.getenv("azure_api_version")
deployment_name = llm_type
llm = AzureChatOpenAI(
openai_api_version=openai_api_version,
azure_deployment=deployment_name
)
rds = RefineDataSummarizer(llm=llm, prompt_template=prompt, refine_template=refine_prompt)
result = rds.get_summarization(text, chunk_num=chunk_num, chunk_overlap=chunk_overlap)
text = result["output_text"]
with open("Summary.txt", 'w') as file:
file.write(text)
return [text, "Summary.txt"]
with gr.Blocks() as demo:
with gr.Row(equal_height=False):
with gr.Column():
file_output = gr.File()
upload_button = gr.UploadButton("Click to Upload a File", file_types=["audio", "video"], file_count="single")
upload_button.upload(upload_file, upload_button, file_output)
model_type = gr.Dropdown(
[
"tiny.en.pt",
"tiny.pt",
"small.en.pt",
"small.pt",
"base.en.pt",
"base.pt",
"medium.en.pt",
"medium.pt",
"large-v1.pt",
"large-v2.pt",], label="Model Type", value="medium.pt")
time_stamp = gr.Checkbox(label="SRT Format", info="SRT format with timestamps")
TranscriptButton = gr.Button("Transcript", variant="primary")
transcript_text = gr.Textbox(placeholder="Transcript Result", label="Transcript")
with gr.Accordion(open=False, label=["Download Transcript"]):
transcript_file = gr.File()
with gr.Column():
with gr.Accordion(open=True, label=["summary settings"]):
chunk_num = gr.Number(precision=0, minimum=1, maximum=9999, step=1, label="Chunk Number", value=1)
chunk_overlap = gr.Number(precision=0, minimum=1, maximum=9999, step=1, label="Chunk Overlap", value=100)
placeholder = gr.Textbox(visible=False)
prompt = gr.Textbox(placeholder="summary prompt", label="Summary Template", lines=5, value=prompt_template)
refine_prompt = gr.Textbox(placeholder="refine summary prompt", label="Refine Summary Template", lines=10, value=refine_template)
with gr.Accordion(open=False, label=["Templates"]):
gr.Examples(
examples=get_prompt_examples(),
inputs=[placeholder, prompt, refine_prompt],
fn=None,
outputs=None,
cache_examples=False,
label="Prompt Template"
)
with gr.Accordion(open=False, label=["llm settings"]):
# user_api = gr.Textbox(placeholder="If Empty, Use Default Key", label="Your API Key", value="Not Provided")
# llm_type = gr.Dropdown(
# [
# "gpt-3.5-turbo",
# "gpt-3.5-turbo-16k",
# "gpt-4-1106-preview"
# ], label="LLM Type", value="gpt-4-1106-preview")
llm_type = gr.Dropdown(
[
"gpt-4-32k",
"gpt-4",
"gpt-4-1106-preview",
"gpt-35-turbo",
"gpt-35-turbo-16k"
], label="LLM Type", value="gpt-4-1106-preview")
SunmmaryButton = gr.Button("Summary", variant="primary")
summary_text = gr.Textbox(placeholder="Summary Result", label="Summary")
with gr.Accordion(open=False, label=["Download Summary"]):
summary_file = gr.File()
TranscriptButton.click(
fn=transcript,
inputs=[
file_output,
model_type,
time_stamp
],
outputs=[transcript_text, transcript_file]
)
SunmmaryButton.click(
fn=summary,
inputs=[
transcript_text,
chunk_num,
chunk_overlap,
#user_api,
llm_type,
prompt,
refine_prompt
],
outputs=[summary_text, summary_file]
)
demo.launch() |