File size: 8,088 Bytes
687e655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import glob
import os
import random
import librosa
import numpy as np
import soundfile as sf
import torch
from numpy.random import default_rng
from pydtmc import MarkovChain
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from config import CONFIG
np.random.seed(0)
rng = default_rng()
def load_audio(
path,
sample_rate: int = 16000,
chunk_len=None,
):
with sf.SoundFile(path) as f:
sr = f.samplerate
audio_len = f.frames
if chunk_len is not None and chunk_len < audio_len:
start_index = torch.randint(0, audio_len - chunk_len, (1,))[0]
frames = f._prepare_read(start_index, start_index + chunk_len, -1)
audio = f.read(frames, always_2d=True, dtype="float32")
else:
audio = f.read(always_2d=True, dtype="float32")
if sr != sample_rate:
audio = librosa.resample(np.squeeze(audio), sr, sample_rate)[:, np.newaxis]
return audio.T
def pad(sig, length):
if sig.shape[1] < length:
pad_len = length - sig.shape[1]
sig = torch.hstack((sig, torch.zeros((sig.shape[0], pad_len))))
else:
start = random.randint(0, sig.shape[1] - length)
sig = sig[:, start:start + length]
return sig
class MaskGenerator:
def __init__(self, is_train=True, probs=((0.9, 0.1), (0.5, 0.1), (0.5, 0.5))):
'''
is_train: if True, mask generator for training otherwise for evaluation
probs: a list of transition probability (p_N, p_L) for Markov Chain. Only allow 1 tuple if 'is_train=False'
'''
self.is_train = is_train
self.probs = probs
self.mcs = []
if self.is_train:
for prob in probs:
self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))
else:
assert len(probs) == 1
prob = self.probs[0]
self.mcs.append(MarkovChain([[prob[0], 1 - prob[0]], [1 - prob[1], prob[1]]], ['1', '0']))
def gen_mask(self, length, seed=0):
if self.is_train:
mc = random.choice(self.mcs)
else:
mc = self.mcs[0]
mask = mc.walk(length - 1, seed=seed)
mask = np.array(list(map(int, mask)))
return mask
class TestLoader(Dataset):
def __init__(self):
dataset_name = CONFIG.DATA.dataset
self.mask = CONFIG.DATA.EVAL.masking
self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']
txt_list = CONFIG.DATA.data_dir[dataset_name]['test']
self.data_list = self.load_txt(txt_list)
if self.mask == 'real':
trace_txt = glob.glob(os.path.join(CONFIG.DATA.EVAL.trace_path, '*.txt'))
trace_txt.sort()
self.trace_list = [1 - np.array(list(map(int, open(txt, 'r').read().strip('\n').split('\n')))) for txt in
trace_txt]
else:
self.mask_generator = MaskGenerator(is_train=False, probs=CONFIG.DATA.EVAL.transition_probs)
self.sr = CONFIG.DATA.sr
self.stride = CONFIG.DATA.stride
self.window_size = CONFIG.DATA.window_size
self.audio_chunk_len = CONFIG.DATA.audio_chunk_len
self.p_size = CONFIG.DATA.EVAL.packet_size # 20ms
self.hann = torch.sqrt(torch.hann_window(self.window_size))
def __len__(self):
return len(self.data_list)
def load_txt(self, txt_list):
target = []
with open(txt_list) as f:
for line in f:
target.append(os.path.join(self.target_root, line.strip('\n')))
target = list(set(target))
target.sort()
return target
def __getitem__(self, index):
target = load_audio(self.data_list[index], sample_rate=self.sr)
target = target[:, :(target.shape[1] // self.p_size) * self.p_size]
sig = np.reshape(target, (-1, self.p_size)).copy()
if self.mask == 'real':
mask = self.trace_list[index % len(self.trace_list)]
mask = np.repeat(mask, np.ceil(len(sig) / len(mask)), 0)[:len(sig)][:, np.newaxis]
else:
mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
sig *= mask
sig = torch.tensor(sig).reshape(-1)
target = torch.tensor(target).squeeze(0)
sig_wav = sig.clone()
target_wav = target.clone()
target = torch.stft(target, self.window_size, self.stride, window=self.hann,
return_complex=False).permute(2, 0, 1)
sig = torch.stft(sig, self.window_size, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
return sig.float(), target.float(), sig_wav, target_wav
class BlindTestLoader(Dataset):
def __init__(self, test_dir):
self.data_list = glob.glob(os.path.join(test_dir, '*.wav'))
self.sr = CONFIG.DATA.sr
self.stride = CONFIG.DATA.stride
self.chunk_len = CONFIG.DATA.window_size
self.hann = torch.sqrt(torch.hann_window(self.chunk_len))
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
sig = load_audio(self.data_list[index], sample_rate=self.sr)
sig = torch.from_numpy(sig).squeeze(0)
sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False).permute(2, 0, 1)
return sig.float()
class TrainDataset(Dataset):
def __init__(self, mode='train'):
dataset_name = CONFIG.DATA.dataset
self.target_root = CONFIG.DATA.data_dir[dataset_name]['root']
txt_list = CONFIG.DATA.data_dir[dataset_name]['train']
self.data_list = self.load_txt(txt_list)
if mode == 'train':
self.data_list, _ = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)
elif mode == 'val':
_, self.data_list = train_test_split(self.data_list, test_size=CONFIG.TRAIN.val_split, random_state=0)
self.p_sizes = CONFIG.DATA.TRAIN.packet_sizes
self.mode = mode
self.sr = CONFIG.DATA.sr
self.window = CONFIG.DATA.audio_chunk_len
self.stride = CONFIG.DATA.stride
self.chunk_len = CONFIG.DATA.window_size
self.hann = torch.sqrt(torch.hann_window(self.chunk_len))
self.mask_generator = MaskGenerator(is_train=True, probs=CONFIG.DATA.TRAIN.transition_probs)
def __len__(self):
return len(self.data_list)
def load_txt(self, txt_list):
target = []
with open(txt_list) as f:
for line in f:
target.append(os.path.join(self.target_root, line.strip('\n')))
target = list(set(target))
target.sort()
return target
def fetch_audio(self, index):
sig = load_audio(self.data_list[index], sample_rate=self.sr, chunk_len=self.window)
while sig.shape[1] < self.window:
idx = torch.randint(0, len(self.data_list), (1,))[0]
pad_len = self.window - sig.shape[1]
if pad_len < 0.02 * self.sr:
padding = np.zeros((1, pad_len), dtype=np.float)
else:
padding = load_audio(self.data_list[idx], sample_rate=self.sr, chunk_len=pad_len)
sig = np.hstack((sig, padding))
return sig
def __getitem__(self, index):
sig = self.fetch_audio(index)
sig = sig.reshape(-1).astype(np.float32)
target = torch.tensor(sig.copy())
p_size = random.choice(self.p_sizes)
sig = np.reshape(sig, (-1, p_size))
mask = self.mask_generator.gen_mask(len(sig), seed=index)[:, np.newaxis]
sig *= mask
sig = torch.tensor(sig.copy()).reshape(-1)
target = torch.stft(target, self.chunk_len, self.stride, window=self.hann,
return_complex=False).permute(2, 0, 1).float()
sig = torch.stft(sig, self.chunk_len, self.stride, window=self.hann, return_complex=False)
sig = sig.permute(2, 0, 1).float()
return sig, target
|