Spaces:
Running
Running
File size: 10,992 Bytes
ad4721b 7af7b4e ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b 7af7b4e ad4721b 7af7b4e ad4721b ae5e903 ad4721b 7af7b4e ad4721b 7af7b4e ae5e903 ad4721b 7af7b4e ae5e903 ad4721b ae5e903 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b 7af7b4e ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b 7af7b4e ae5e903 ad4721b ffbbba2 ad4721b cb596ec ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ad4721b ffbbba2 ae5e903 ad4721b ffbbba2 ad4721b 491943f 24e3d7d ad4721b 24e3d7d 7af7b4e ad4721b c55fdb6 24e3d7d ad4721b c12117e 22fe98a 0253e8e f25805e 0253e8e 22fe98a 491943f c12117e 24e3d7d ad4721b 491943f ad4721b 491943f ad4721b 30ed4ed 24e3d7d ad4721b ffbbba2 7af7b4e ae5e903 ffbbba2 9d3e8f3 c27bfaf 9d3e8f3 5119e82 c27bfaf ffbbba2 9d3e8f3 ffbbba2 9d3e8f3 5119e82 ffbbba2 c0ad75f ad4721b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import gradio as gr
import ast
import numpy as np
from PIL import Image, ImageDraw
import torch
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
from utils.model import init_model
from utils.tokenization_clip import SimpleTokenizer as ClipTokenizer
from fastapi.staticfiles import StaticFiles
from fileservice import app
def image_to_tensor(image_path):
image = Image.open(image_path).convert('RGB')
preprocess = Compose([
Resize([224, 224], interpolation=Image.BICUBIC),
lambda image: image.convert("RGB"),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
image_data = preprocess(image)
return {'image': image_data}
def get_image_data(image_path):
image_input = image_to_tensor(image_path)
return image_input
def parse_bool_string(s):
try:
bool_list = ast.literal_eval(s)
if not isinstance(bool_list, list):
raise ValueError("The input string must represent a list.")
return bool_list
except (SyntaxError, ValueError) as e:
raise ValueError(f"Invalid input string: {e}")
def get_intervention_vector(selected_cells_bef, selected_cells_aft):
first_ = True
second_ = True
left_map = np.zeros((1, 14 * 14 + 1))
right_map = np.zeros((1, 14 * 14 + 1))
left_map[0, 1:] = np.reshape(selected_cells_bef, (1, 14 * 14))
right_map[0, 1:] = np.reshape(selected_cells_aft, (1, 14 * 14))
if np.count_nonzero(selected_cells_bef) == 0:
left_map[0, 0] = 1.0
first_ = False
if np.count_nonzero(selected_cells_aft) == 0:
right_map[0, 0] = 1.0
second_ = False
return left_map, right_map, first_, second_
def _get_rawimage(image_path):
# Pair x L x T x 3 x H x W
image = np.zeros((1, 3, 224,
224), dtype=np.float)
for i in range(1):
raw_image_data = get_image_data(image_path)
raw_image_data = raw_image_data['image']
image[i] = raw_image_data
return image
def greedy_decode(model, tokenizer, video, video_mask, gt_left_map, gt_right_map):
visual_output, left_map, right_map = model.get_sequence_visual_output(video, video_mask,
gt_left_map[:, 0, :].squeeze(), gt_right_map[:, 0, :].squeeze())
video_mask = torch.ones(visual_output.shape[0], visual_output.shape[1], device=visual_output.device).long()
input_caption_ids = torch.zeros(visual_output.shape[0], device=visual_output.device).data.fill_(tokenizer.vocab["<|startoftext|>"])
input_caption_ids = input_caption_ids.long().unsqueeze(1)
decoder_mask = torch.ones_like(input_caption_ids)
for i in range(32):
decoder_scores = model.decoder_caption(visual_output, video_mask, input_caption_ids, decoder_mask, get_logits=True)
next_words = decoder_scores[:, -1].max(1)[1].unsqueeze(1)
input_caption_ids = torch.cat([input_caption_ids, next_words], 1)
next_mask = torch.ones_like(next_words)
decoder_mask = torch.cat([decoder_mask, next_mask], 1)
return input_caption_ids[:, 1:].tolist(), left_map, right_map
# Dummy prediction function
def predict_image(image_bef, image_aft, json_data_bef, json_data_aft):
if image_bef is None:
return "No image provided", "", ""
if image_aft is None:
return "No image provided", "", ""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = init_model('data/pytorch_model.pt', device)
tokenizer = ClipTokenizer()
selected_cells_bef = np.asarray(parse_bool_string(json_data_bef), np.int32)
selected_cells_aft = np.asarray(parse_bool_string(json_data_aft), np.int32)
left_map, right_map, first_, second_ = get_intervention_vector(selected_cells_bef, selected_cells_aft)
left_map, right_map = torch.from_numpy(left_map).unsqueeze(0), torch.from_numpy(right_map).unsqueeze(0)
bef_image = torch.from_numpy(_get_rawimage(image_bef)).unsqueeze(1)
aft_image = torch.from_numpy(_get_rawimage(image_aft)).unsqueeze(1)
image_pair = torch.cat([bef_image, aft_image], 1)
image_mask = torch.from_numpy(np.ones(2, dtype=np.long)).unsqueeze(0)
result_list, left_map, right_map = greedy_decode(model, tokenizer, image_pair, image_mask, left_map, right_map)
decode_text_list = tokenizer.convert_ids_to_tokens(result_list[0])
if "<|endoftext|>" in decode_text_list:
SEP_index = decode_text_list.index("<|endoftext|>")
decode_text_list = decode_text_list[:SEP_index]
if "!" in decode_text_list:
PAD_index = decode_text_list.index("!")
decode_text_list = decode_text_list[:PAD_index]
decode_text = decode_text_list.strip()
# Generate dummy predictions
pred = f"{decode_text}"
# Include information about selected cells
i, j = np.nonzero(selected_cells_bef)
selected_info_bef = f"{list(zip(i, j))}" if first_ else "No image patch was selected"
i, j = np.nonzero(selected_cells_aft)
selected_info_aft = f"{list(zip(i, j))}" if second_ else "No image patch was selected"
return pred, selected_info_bef, selected_info_aft
# Add grid to the image
def add_grid_to_image(image_path, grid_size=14):
if image_path is None:
return None
image = Image.open(image_path)
w, h = image.size
image = image.convert('RGBA')
draw = ImageDraw.Draw(image)
x_positions = np.linspace(0, w, grid_size + 1)
y_positions = np.linspace(0, h, grid_size + 1)
# Draw the vertical lines
for x in x_positions[1:-1]:
line = ((x, 0), (x, h))
draw.line(line, fill='white')
# Draw the horizontal lines
for y in y_positions[1:-1]:
line = ((0, y), (w, y))
draw.line(line, fill='white')
return image, h, w
# Handle cell selection
def handle_click(image, evt: gr.SelectData, selected_cells, image_path):
if image is None:
return None, []
grid_size = 14
image, h, w = add_grid_to_image(image_path, grid_size)
x_positions = np.linspace(0, w, grid_size + 1)
y_positions = np.linspace(0, h, grid_size + 1)
# Calculate which cell was clicked
for index, x in enumerate(x_positions[:-1]):
if evt.index[0] >= x and evt.index[0] <= x_positions[index+1]:
row = index
for index, y in enumerate(y_positions[:-1]):
if evt.index[1] >= y and evt.index[1] <= y_positions[index+1]:
col = index
cell_idx = (row, col)
# Toggle selection
if cell_idx in selected_cells:
selected_cells.remove(cell_idx)
else:
selected_cells.append(cell_idx)
# Add semi-transparent overlay for selected cells
highlight_layer = Image.new('RGBA', (w, h), (0, 0, 0, 0)) # Fully transparent layer
highlight_draw = ImageDraw.Draw(highlight_layer)
# Define a lighter green color with 40% transparency
light_green = (144, 238, 144, 102) # RGB = (144, 238, 144), Alpha = 102 (40% of 255)
for (row, col) in selected_cells:
cell_top_left = (x_positions[row], y_positions[col])
cell_bottom_right = (x_positions[row + 1], y_positions[col + 1])
highlight_draw.rectangle([cell_top_left, cell_bottom_right], fill=light_green, outline='white')
result_img = Image.alpha_composite(image.convert('RGBA'), highlight_layer)
return result_img, selected_cells
# Process example images
def process_example(image_path_bef, image_path_aft):
# Add grid to the example image
image_bef_grid, _, _ = add_grid_to_image(image_path_bef, 14)
image_aft_grid, _, _ = add_grid_to_image(image_path_aft, 14)
return image_bef_grid, image_aft_grid # Reset selected cells and store original image
def get_image_size(image_path):
w, h = Image.open(image_path).convert('RGB').size
return w, h
with gr.Blocks() as demo:
gr.Markdown("# TAB: Transformer Attention Bottleneck")
# Instructions
gr.Markdown("""
## Instructions:
1. Upload an image or select one from the examples
2. Click on grid cells to select/deselect them
3. Click the 'Predict' button to get model predictions
""")
height = gr.State(value=320)
width = gr.State(value=480)
sel_attn_bef = gr.Textbox("", visible=False)
sel_attn_aft = gr.Textbox("", visible=False)
with gr.Row():
with gr.Column(scale=1):
# Input components with grid overlay
image_bef = gr.Image(type="filepath", visible=True)
image_aft = gr.Image(type="filepath", visible=True)
predict_btn = gr.Button("Predict")
with gr.Column(scale=1):
html_text = f"""
<div id="container">
<canvas id="before" style="width: 100%; height: auto;"></canvas><img id="canvas-before" style="display:none;"/>
</div>
<br>
<div id="container">
<canvas id="after" style="width: 100%; height: auto;"></canvas><img id="canvas-after" style="display:none;"/>
</div>
"""
html = gr.HTML(html_text)
with gr.Row():
with gr.Column(scale=1):
# Example images
examples = gr.Examples(
examples=[["data/images/CLEVR_default_000572.png", "data/images/CLEVR_semantic_000572.png"],
["data/images/CLEVR_default_003339.png", "data/images/CLEVR_semantic_003339.png"]],
inputs=[image_bef, image_aft],
outputs=[width, height],
label="Example Images",
fn=get_image_size,
examples_per_page=5
)
with gr.Column(scale=1):
# Output components
prediction = gr.Textbox(label="Predicted caption")
selected_info_bef = gr.Textbox(label="Selected patches on before")
selected_info_aft = gr.Textbox(label="Selected patches on after")
# Connect the predict button to the prediction function
predict_btn.click(
fn=predict_image,
inputs=[image_bef, image_aft, sel_attn_bef, sel_attn_aft],
outputs=[prediction, selected_info_bef, selected_info_aft],
_js="(image_bef, image_aft, sel_attn_bef, sel_attn_aft) => { return [image_bef, image_aft, read_js_Data_bef(), read_js_Data_aft()]; }"
)
image_bef.change(
fn=None,
inputs=[image_bef],
outputs=[],
_js="(image_bef) => { importBackgroundBefore(image_bef); initializeEditorBefore(); return []; }",
)
image_aft.change(
fn=None,
inputs=[image_aft],
outputs=[],
_js="(image_aft) => { importBackgroundAfter(image_aft); initializeEditorAfter(); return []; }",
)
app.mount("/js", StaticFiles(directory="js"), name="js")
gr.mount_gradio_app(app, demo, path="/")
|