File size: 12,960 Bytes
d526dbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# Original Author: Jonathan Donnellya (jonathan.donnelly@maine.edu)
# Modified by Mohammad Reza Taesiri (mtaesiri@gmail.com)
import os
import torch
import torch.nn as nn
from collections import OrderedDict
model_dir = os.path.dirname(os.path.realpath(__file__))
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
# class attribute
expansion = 1
num_layers = 2
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
# only conv with possibly not 1 stride
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
# if stride is not 1 then self.downsample cannot be None
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
# the residual connection
out += identity
out = self.relu(out)
return out
def block_conv_info(self):
block_kernel_sizes = [3, 3]
block_strides = [self.stride, 1]
block_paddings = [1, 1]
return block_kernel_sizes, block_strides, block_paddings
class Bottleneck(nn.Module):
# class attribute
expansion = 4
num_layers = 3
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
# only conv with possibly not 1 stride
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
# if stride is not 1 then self.downsample cannot be None
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
def block_conv_info(self):
block_kernel_sizes = [1, 3, 1]
block_strides = [1, self.stride, 1]
block_paddings = [0, 1, 0]
return block_kernel_sizes, block_strides, block_paddings
class ResNet_features(nn.Module):
"""
the convolutional layers of ResNet
the average pooling and final fully convolutional layer is removed
"""
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet_features, self).__init__()
self.inplanes = 64
# the first convolutional layer before the structured sequence of blocks
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# comes from the first conv and the following max pool
self.kernel_sizes = [7, 3]
self.strides = [2, 2]
self.paddings = [3, 1]
# the following layers, each layer is a sequence of blocks
self.block = block
self.layers = layers
self.layer1 = self._make_layer(
block=block, planes=64, num_blocks=self.layers[0]
)
self.layer2 = self._make_layer(
block=block, planes=128, num_blocks=self.layers[1], stride=2
)
self.layer3 = self._make_layer(
block=block, planes=256, num_blocks=self.layers[2], stride=2
)
self.layer4 = self._make_layer(
block=block, planes=512, num_blocks=self.layers[3], stride=2
)
# initialize the parameters
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, num_blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
# only the first block has downsample that is possibly not None
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.inplanes, planes))
# keep track of every block's conv size, stride size, and padding size
for each_block in layers:
(
block_kernel_sizes,
block_strides,
block_paddings,
) = each_block.block_conv_info()
self.kernel_sizes.extend(block_kernel_sizes)
self.strides.extend(block_strides)
self.paddings.extend(block_paddings)
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def conv_info(self):
return self.kernel_sizes, self.strides, self.paddings
def num_layers(self):
"""
the number of conv layers in the network, not counting the number
of bypass layers
"""
return (
self.block.num_layers * self.layers[0]
+ self.block.num_layers * self.layers[1]
+ self.block.num_layers * self.layers[2]
+ self.block.num_layers * self.layers[3]
+ 1
)
def __repr__(self):
template = "resnet{}_features"
return template.format(self.num_layers() + 1)
def resnet50_features(pretrained=True, inat=True, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet or iNaturalist
pretrained (bool): If True, returns a model pre-trained on iNaturalst; else, ImageNet
"""
model = ResNet_features(Bottleneck, [3, 4, 6, 4], **kwargs)
if pretrained:
if inat:
# print('Loading iNat model')
model_dict = torch.load(
model_dir
+ "/../../weights/"
+ "BBN.iNaturalist2017.res50.90epoch.best_model.pth.pt"
)
else:
raise
if inat:
model_dict.pop("module.classifier.weight")
model_dict.pop("module.classifier.bias")
for key in list(model_dict.keys()):
model_dict[
key.replace("module.backbone.", "")
.replace("cb_block", "layer4.2")
.replace("rb_block", "layer4.3")
] = model_dict.pop(key)
else:
raise
model.load_state_dict(model_dict, strict=False)
return model
class ResNet_classifier(nn.Module):
"""
A classifier for Deformable ProtoPNet
"""
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet_classifier, self).__init__()
self.inplanes = 64
# the first convolutional layer before the structured sequence of blocks
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# comes from the first conv and the following max pool
self.kernel_sizes = [7, 3]
self.strides = [2, 2]
self.paddings = [3, 1]
# the following layers, each layer is a sequence of blocks
self.block = block
self.layers = layers
self.layer1 = self._make_layer(
block=block, planes=64, num_blocks=self.layers[0]
)
self.layer2 = self._make_layer(
block=block, planes=128, num_blocks=self.layers[1], stride=2
)
self.layer3 = self._make_layer(
block=block, planes=256, num_blocks=self.layers[2], stride=2
)
self.layer4 = self._make_layer(
block=block, planes=512, num_blocks=self.layers[3], stride=2
)
self.classifier = nn.Linear(2048 * 7 * 7, 200)
# initialize the parameters
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, num_blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
# only the first block has downsample that is possibly not None
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, num_blocks):
layers.append(block(self.inplanes, planes))
# keep track of every block's conv size, stride size, and padding size
for each_block in layers:
(
block_kernel_sizes,
block_strides,
block_paddings,
) = each_block.block_conv_info()
self.kernel_sizes.extend(block_kernel_sizes)
self.strides.extend(block_strides)
self.paddings.extend(block_paddings)
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.classifier(torch.flatten(x, start_dim=1))
return x
def conv_info(self):
return self.kernel_sizes, self.strides, self.paddings
def num_layers(self):
"""
the number of conv layers in the network, not counting the number
of bypass layers
"""
return (
self.block.num_layers * self.layers[0]
+ self.block.num_layers * self.layers[1]
+ self.block.num_layers * self.layers[2]
+ self.block.num_layers * self.layers[3]
+ 1
)
def __repr__(self):
template = "resnet{}_features"
return template.format(self.num_layers() + 1)
|